Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Publish place: Caspian Journal of Enviromental Sciences، Vol: 15، Issue: 4
Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 227
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CJES-15-4_008
تاریخ نمایه سازی: 27 خرداد 1403
Abstract:
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Province, Iran, SRC equation was derived, and then, using evolutionary algorithms (genetic algorithm and particle swarm optimization algorithm) it was calibrated again. Worth mentioning, before model calibration, to increase the generalization power of the models, using self-organizing map (an unsupervised artificial neural network for data clustering), the data were clustered and then by data sampling, they were classified into two homogeneous groups (calibration and test data set). The results showed that evolutionary algorithms are appropriate methods for optimizing coefficients of SRC model and their results are much more favorable than those of the conventional SRC models or SRC models corrected by correction factors. So that, the sediment rating curve models calibrated with evolutionary algorithms, by reducing the RMSE of the test data set of ۵۷۵۴.۰۲ ton day-۱ (in the initial SRC model) to ۱۶۸۱.۲۱ ton day-۱ (in the calibrated models by evolutionary algorithms) increased the accuracy of suspended sediment load estimation at a rate of ۴۰۷۲.۸۱ ton day-۱. In total, using evolutionary algorithms in calibrating SRC models prevents data log-transformation and use of correction factors along with increasing in the accuracy of molding results.
Keywords:
Clustering , Genetic and PSO Algorithms , Sediment Rating Curve , Self-Organizing Map , Suspended Sediment Load
Authors
M Tabatabaei
Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
A Salehpour Jam
Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :