Correlation estimation between samples based on covariance, graph theory and graph neural network
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 253
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-12_015
تاریخ نمایه سازی: 17 تیر 1403
Abstract:
One of the standard criteria for expressing the relationship between two random variables is the correlation coefficient. Correlation between variables shows that changing the value of one variable leads to changing another variable in a certain direction. It is also possible to use the value of one variable to predict the value of another. In statistics, the correlation coefficient measures the direction and strength of the tendency to change. In machine learning, the correlation coefficient is known as a measure of classification quality. In fact, as a starting step for classification, the correlation between different samples should be estimated using a specific method. There are various methods to estimate the correlation of different data types, which have disadvantages such as low accuracy or high computational time. One of the methods that can overcome these problems, due to its high capability in modeling correlation between samples is graphical modeling. In this research, a new covariance model based on graph theory and graph neural network for estimating the correlation between samples is presented. The results show the improvement of the proposed model in accuracy, sensitivity, precision, F-Micro, F-Macro and statistical tests compared to Pearson and cosine methods.
Keywords:
Authors
Ebrahim Khalili
Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
Razieh Mlekhosseini
Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
S. Hadi Yaghoubian
Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
Hamid Parvin
Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
Karamollah Bagherifard
Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :