Correlation estimation between samples based on covariance, graph theory and graph neural network

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 253

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJNAA-15-12_015

تاریخ نمایه سازی: 17 تیر 1403

Abstract:

One of the standard criteria for expressing the relationship between two random variables is the correlation coefficient. Correlation between variables shows that changing the value of one variable leads to changing another variable in a certain direction. It is also possible to use the value of one variable to predict the value of another. In statistics, the correlation coefficient measures the direction and strength of the tendency to change. In machine learning, the correlation coefficient is known as a measure of classification quality. In fact, as a starting step for classification, the correlation between different samples should be estimated using a specific method. There are various methods to estimate the correlation of different data types, which have disadvantages such as low accuracy or high computational time. One of the methods that can overcome these problems, due to its high capability in modeling correlation between samples is graphical modeling. In this research, a new covariance model based on graph theory and graph neural network for estimating the correlation between samples is presented. The results show the improvement of the proposed model in accuracy, sensitivity, precision, F-Micro, F-Macro and statistical tests compared to Pearson and cosine methods.

Authors

Ebrahim Khalili

Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran

Razieh Mlekhosseini

Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran

S. Hadi Yaghoubian

Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran

Hamid Parvin

Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran

Karamollah Bagherifard

Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • H. Akoglu, User’s guide to correlation coefficients, Turk. J. Emergency ...
  • Y. Al-Sbou, Minkowski distance as a quality of service assessment ...
  • R.C. Amorim and B. Mirkin, Minkowski metric, feature weighting and ...
  • A.V. Arkhangel’skii and L.S. Pontryagin, General Topology I: Basic Concepts ...
  • C. Borrego, E. Hemandez-Orallo, P. Manzoni, and A.M. Vegni, LAPSE: ...
  • U. Brandes, On variants of shortest-path between centrality and their ...
  • H.B. Colakoglu, A generalization of the Minkowski distance and a ...
  • M.C. Delfour, Topological derivative: A semidifferential via the Minkowski content, ...
  • F. Errica, M. Podda, D. Bacciu, and A. Micheli, A ...
  • M. Girvan and M.E. Newman, Community structure in social and ...
  • L. Goodwin, D. Leech, and L. Nancy, Understanding Correlation: Factors ...
  • M. Goswami, A. Babu, and B.S Purkayastha, A comparative analysis ...
  • S. Gultom, S. Sriadhi, M. Martiano, and J. Simarmata, Comparison ...
  • M. Hanafy and R. Ming, Classification of the insureds using ...
  • W. Inariba, T. Akiba, and Y. Yoshida, Random-radius ball method ...
  • Y. Jin, Q. Bao, and Z. Zhang, Forest distance closeness ...
  • H. Kalhori, M.M. Alamdari, and L. Ye, Automated algorithm for ...
  • Kent State University, SPSS Tutorials: Pearson Correlation, Available: https://libguides.library.kent.edu/SPSS/PearsonCorr ...
  • J.M. List, Beyond edit distances: Comparing linguistic reconstruction systems, Theor. ...
  • C. Liu, F. Zhu, X. Chang, X. Liang, Z. Ge, ...
  • H. Mark and J. WorkmanJr, Chemometrics in Spectroscopy, Second Edition, ...
  • S.K. Maurya and X. Liu, Tsuyoshi Murata, graph neural networks ...
  • R. Pascual-Marqui, D. Lehmann, K. Kochi, T. Kinoshita, and N. ...
  • M. Pervaiz, A. Jalal, and K. Kim, Hybrid algorithm for ...
  • M. Pintor, D. Angioni, A. Sotgiu, L. Demetrio, A. Demontis, ...
  • A. Raj and S. Susan, Clustering Analysis for Newsgroup Classification, ...
  • A. Saxena, R. Gera, and S.R.S Iyengar, A faster method ...
  • J.R. Taylor, An Introduction to Error Analysis: The Study of ...
  • K. Thirumoorthy and K. Muneeswaran, Feature selection for text classification ...
  • A. van der Grinten, E. Angriman, M. Predari, and H. ...
  • A. Verm and V. Ranga, Machine learning-based intrusion detection systems ...
  • S. Zhang and X. Pan, A novel text classification based ...
  • K. Zhao, Y. Dai, Z. Jia, and Y. Ji, General ...
  • Q. Zhou, P. Tang, S. Liu, J. Pan, Q. Yan, ...
  • نمایش کامل مراجع