Development of an automated region-of-interest-setting method based on a deep neural network for brain perfusion single photon emission computed tomography quantification methods

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 10

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JNMB-12-2_003

تاریخ نمایه سازی: 17 تیر 1403

Abstract:

Objective(s): A simple noninvasive microsphere (SIMS) method using ۱۲۳I-IMP and an improved brain uptake ratio (IBUR) method using ۹۹mTc-ECD for the quantitative measurement of regional cerebral blood flow have been recently reported. The input functions of these methods were determined using the administered dose, which was obtained by analyzing the time activity curve of the pulmonary artery (PA) for SIMS and the ascending aorta (AAo) for the IBUR methods for dynamic chest images. If the PA and AAo regions of interest (ROIs) can be determined using deep convolutional neural networks (DCNN) for segmentation, the accuracy of these ROI-setting methods can be improved through simple analytical operations to ensure repeatability and reproducibility. The purpose of this study was to develop new PA and AAo-ROI setting methods using a DCNN (DCNN-ROI method).Methods: A U-Net architecture based on convolutional neural networks was used to determine the PA and AAo candidate regions. Images of ۲۹۰ patients who underwent ۱۲۳I-IMP RI-angiography and ۱۰۸ patients who underwent ۹۹mTc-ECD RI-angiography were used. The PA and AAo-ROI results for the DCNN-ROI method were compared to those obtained using manual methods. The counts for the input function on the PA and AAo-ROI were determined by integrating the area under the curve (AUC) counts of the time-activity curve of PA and AAo-ROI, respectively. The effectiveness of the DCNN-ROI method was elucidated through a comparison with the integrated AUC counts of the DCNN-ROI and the manual ROI.Results: The coincidence ratio for the locations of the PA and AAo-ROI obtained using the DCNN method and that for the manual method was ۱۰۰%. Strong correlations were observed between the AUC counts using the DCNN and manual methods.Conclusion: New ROI- setting programs were developed using a deep convolution neural network DCNN to determine the input functions for the SIMS and IBUR methods. The accuracy of these methods is comparable to that of the manual method.

Authors

Taeko Tomimatsu

Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan

Kousuke Yamshita

Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan

Takumi Sakata

Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan

Ryosuke Kamezaki

Department of Central Radiology Kumamoto University Hospital, Kumamoto, Japan

Ryuji Ikeda

Department of Central Radiology Kumamoto University Hospital, Kumamoto, Japan

Shinya Shiraishi

Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan

Yoshikazu Uchiyama

Department of Information and Communication Technology, Faculty of Engineering, University of Miyazaki

Shigeki Ito

Department of Medical Imaging, Faculty of Life Sciences, Kumamoto, Kumamoto , Japan

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Wong CH, Mohamed A, Larcos G, McCredie R, Somerville E, ...
  • Newberg AB, Wintering N, Khalsa DS, Roggenkamp H, Waldman MR. ...
  • Inui Y, Toyama H, Manabe Y, Sato T, Sarai M, ...
  • Kanai Y, Hasegawa S, Kimura Y, Oku N, Ito H, ...
  • Matsuda H, Oba H, Terada H, Tsuj S, Sumi H, ...
  • Van Laere K, Dumont F, Koole M, Dierckx R. Noninvasive ...
  • Odano I, Ohkubo M, Yokoi T. Noninvasive quantification of cerebral ...
  • Kuhl DE, Barrio JR, Huang SC, Selin C, Ackermann RF, ...
  • Iida H, Itoh H, Nakazawa M, Hatazawa J, Nishimura H, ...
  • Kyeong MK, Watanabe H, Hayashi T, Hayashida K, Katafuchi T, ...
  • Iida H, Narita Y, Kado H, Kashikura A, Sugawara S, ...
  • Nishizawa S, Yonekura Y, Tanaka F, Fujita T, Tsuchimochi S, ...
  • Matsuda H, Tsuji S, Shuke N, Sumiya H, Tonami N, ...
  • Tomiguchi S, Tashiro K, Shiraishi S, Yoshida M, Kawanaka K, ...
  • Iseya O, Mihara T, Suzuki K, Miyamae T, Matsuda H. ...
  • Miyazaki Y, Kinuya S, Hashimoto M, Satake R, Inoue H, ...
  • Takeuchi R, Matsuda H, Yonekura Y, Sakahara H, Konishi J. ...
  • Takeuchi R, Yonekura Y, Matsuda H, Konishi J. Usefulness of ...
  • Ofuji A, Mimura H, Yamashita K, Takaki A, Sone T, ...
  • Ito S, Takaki A, Inoue S, Tomiguchi S, Shiraishi S, ...
  • Nagaoka R, Ofuji A, Yamashita K, Tomimatsu T, Orita S, ...
  • Masunaga S, Uchiyama Y, Ofuji A, Nagaoka R, Tomimatsu T, ...
  • Ofuji A, Nagaoka R, Yamashita K. Takaki A, Ito S. ...
  • Yamashita K, Uchiyama Y, Ofuji A, Mimura H, Okumiya S, ...
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. ۲۰۱۵; ...
  • Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural ...
  • Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for ...
  • Hassanzadeh T, Essam D, Sarker R. ۲D to ۳D Evolutionary ...
  • Zhang S, Zhou Y, Tang D, Ni M, Zheng J, ...
  • Jeon U, Kim H, Hong H, Wang J. Automatic Meniscus ...
  • Chen X, Zhou B, Xie H, Shi L, Liu H, ...
  • Hashimoto F, Ito M, Ote K, Isobe T, Okada H, ...
  • Armanious K, Hepp T, Küstner T, Dittmann H, Nikolaou K, ...
  • Yin XX, Sun L, Fu Y, Lu R, Zhang Y. ...
  • Sun H, Jiang Y, Yuan J, Wang H, Liang D, ...
  • نمایش کامل مراجع