Feasibility of direct brain ۱۸F-fluorodeoxyglucose-positron emission tomography attenuation and high-resolution correction methods using deep learning

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 72

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JNMB-12-2_002

تاریخ نمایه سازی: 17 تیر 1403

Abstract:

Objective(s): To develop the following three attenuation correction (AC) methods for brain ۱۸F-fluorodeoxyglucose-positron emission tomography (PET), using deep learning, and to ascertain their precision levels: (i) indirect method; (ii) direct method; and (iii) direct and high-resolution correction (direct+HRC) method.Methods: We included ۵۳ patients who underwent cranial magnetic resonance imaging (MRI) and computed tomography (CT) and ۲۷ patients who underwent cranial MRI, CT, and PET. After fusion of the magnetic resonance, CT, and PET images, resampling was performed to standardize the field of view and matrix size and prepare the data set. In the indirect method, synthetic CT (SCT) images were generated, whereas in the direct and direct+HRC methods, a U-net structure was used to generate AC images. In the indirect method, attenuation correction was performed using SCT images generated from MRI findings using U-net instead of CT images. In the direct and direct+HRC methods, AC images were generated directly from non-AC images using U-net, followed by image evaluation. The precision levels of AC images generated using the indirect and direct methods were compared based on the normalized mean squared error (NMSE) and structural similarity (SSIM).Results: Visual inspection revealed no difference between the AC images prepared using CT-based attenuation correction and those prepared using the three methods. The NMSE increased in the order indirect, direct, and direct+HRC methods, with values of ۰.۲۸۱×۱۰-۳, ۴.۶۲×۱۰-۳, and ۱۲.۷×۱۰-۳, respectively. Moreover, the SSIM of the direct+HRC method was ۰.۹۷۵.Conclusion: The direct+HRC method enables accurate attenuation without CT exposure and high-resolution correction without dedicated correction programs.

Authors

Tomohiro Ueda

Graduate School of Health Sciences, Kumamoto University, Japan

Kousuke Yamshita

Graduate School of Health Sciences, Kumamoto University, Japan

Retsu Kawazoe

Graduate School of Health Sciences, Kumamoto University, Japan

Yuta Sayawaki

Graduate School of Health Sciences, Kumamoto University, Japan

Yoshiki Morisawa

Graduate School of Health Sciences, Kumamoto University, Japan

Ryosuke Kamezaki

۲Kumamoto University Hospital, Japan

Ryuji Ikeda

Department of Central Radiology Kumamoto University Hospital, Japan

Shinya Shiraishi

Department of Diagnostic Radiology, Faculty of Life Sciences,Kumamoto University, Japan

Yoshikazu Uchiyama

Department of Information and Communication Technology, Faculty of Engineering, University of Miyazaki, Japan

Shigeki Ito

Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, Japan

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Mosconi L. Glucose metabolism in normal aging and Alzheimer's disease: ...
  • Tomasi G, Turkheimer F, Aboagye E. Importance of quantification for ...
  • Bertoldo A, Rizzo G, Veronese M. Deriving physiological information from ...
  • Rogasch JMM, Hofheinz F, van Heek L, Voltin CA, Boellaard ...
  • Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, ...
  • Visvikis D, Costa DC, Croasdale I, Lonn AH, Bomanji J, ...
  • Blankespoor SC, Xu X, Kaiki K, Brown JK, Tang HR, ...
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature ۲۰۱۵; ...
  • Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural ...
  • Lee J.S. A review of deep-learning-based approaches for attenuation correction ...
  • Shiri I, Ghafarian P, Geramifar P, Leung KH, Ghelichoghli M, ...
  • Dong X, Lei Y, Wang T, Higgins K, Liu T, ...
  • Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial ...
  • Hashimoto F, Ito M, Ote K, Isobe T, Okada H, ...
  • National Cancer Institute. Cancer imaging https://www.cancerimagingarchive. net/ access-data/. Accessed ۱۴ ...
  • Zimmermann L, Knäus B, Stock M, Lütgendorf-Caucig C, Georg D ...
  • Salvadori J, Odille F, Verger A, Olivier P, Karcher G, ...
  • Salvadori J, Imbert, Perrin M, Karcher G, Lamiral Z, Marie ...
  • Richardson WH. Bayesian-based iterative method of image restoration. JOSA. ۱۹۷۲; ...
  • Lucy LB. An iterative technique for the rectification of observed ...
  • Brant-Zawadzki M, Gillan GD, Nitz WR. MP RAGE: a three-dimensional, ...
  • Wetzel SG, Johnson G, Tan AG, Cha S, Knopp EA, ...
  • Yin XX, Sun L, Fu Y, Lu R, Zhang Y. ...
  • Sun H, Jiang Y, Yuan J, Wang H, Liang D, ...
  • Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for ...
  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP.Image quality assessment: ...
  • Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ ...
  • Raymond C, Jurkiewicz MT, Orunmuyi A, Liu L, Dada MO, ...
  • Arabi H, Bortolin K, Ginovart N, Garibotto V, Zaidi H. ...
  • Narayanan M. Perkins A. Resolution recovery in the lngenuity TF ...
  • Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, ...
  • نمایش کامل مراجع