An adaptive reversible data hiding scheme based on histogram shifting using decimal floating signed-digit stream
Publish Year: 1403
Type: Preprint paper
Language: English
View: 197
This Preprint With 23 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
pre-2025296
Index date: 10 July 2024
An adaptive reversible data hiding scheme based on histogram shifting using decimal floating signed-digit stream abstract
This paper proposes a novel method based on histogram shifting using signed digits for data hiding. Our proposed method takes the prediction errors obtained from the original image using a 4×4 block-wise prediction. Then, we embed the information in the prediction errors of the image using the histogram shifting technique. A crucial point regarding the embeddable data in this method is that we divide the binary stream into equal parts of two, three, or four bits. For each two, three, or four-bit digit, we consider a numerical equivalent using the approach described in this paper. Subsequently, based on each of the signed digits, assigned floating numbers are used to represent the embeddable information instead of the binary stream. Experimental results for a sample image, "Airplane", with four-bit data segmentation demonstrate an outstanding embedding capacity of 825,080 bits and a PSNR of 33.87 dB, indicating that our proposed scheme achieves a remarkably high embedding capacity while maintaining an acceptable visual quality.
An adaptive reversible data hiding scheme based on histogram shifting using decimal floating signed-digit stream Keywords:
An adaptive reversible data hiding scheme based on histogram shifting using decimal floating signed-digit stream authors
Reza Ghorbandost
Islamic Azad University, Science and Research Branch
Maryam Rajabzadeh Asaar
Islamic Azad University, Science and Research Branch
مراجع و منابع این Preprint:
لیست زیر مراجع و منابع استفاده شده در این مقاله پیش چاپ را نمایش می دهد. برخی از مراجع این مقاله ممکن است قبلا در سیویلیکا نمایه شده باشند، در این صورت مراجع مورد نظر به صورت کاملا ماشینی و بر اساس هوش مصنوعی و بدون دخالت انسانی استخراج شده و به مقاله یا منبع مذکور لینک میشوند