Development of fragility curve for railway embankment

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 8

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJMGE-58-2_009

تاریخ نمایه سازی: 21 تیر 1403

Abstract:

For the construction of railway embankments, geotechnical engineers pay special attention to slope stability studies. The factor of safety values plays a crucial part in assessing the safe design of slopes. The factor of safety values is used to determine how close or far slopes are from failing due to natural or man-made causes. The factor of safety is a numeric value to indicate the relative stability, it doesn’t tell about the actual risk level of any structure, but the reliability index and probability of failure quantify the risk level. The present study discusses the findings of a study to determine the factor of safety of an embankment of height ۱۲.۳ m by using Geo-studio ۲۰۱۲ software. In this article, the fragility curve for six different types of cross-sections was also developed i.e. the graph between the probability of failure ( ) and horizontal seismic coefficient ( ), for various values of  (i.e. ۰.۱, ۰.۱۲, ۰.۱۴۴, ۰.۱۸, ۰.۲, ۰.۳, ۰.۴ and ۰.۵). It is observed from the developed fragility curve, as the  value increases  value decreases. A fragility curve can be used to calculate failure probability over a range of seismic zones, and for design purposes, a given seismic zone and probability of failure a unique reliable side slope is selected. Further, two machine learning (ML) models namely, Deep Neural Network (DNN) and Support Vector Regression (SVR) have been developed for the prediction of the factor of safety for different sides slope. Obtained correlation values (R) for SVR and DNN are approximately ۰.۹۵ and ۰.۸۲ respectively. From the help of the predicted factor of safety fragility curve against horizontal seismic coefficient is drawn for both SVR and DNN models, that for reducing the time of calculation and ease in working best result giving model will be suggested for further analysis of railway embankment.

Authors

Divesh Kumar

National Institute of Technology (NIT) Patna, Bihar, India.

Alok Bharti

National Institute of Technology (NIT) Patna, Bihar, India.

Pijush Samui

National Institute of Technology (NIT) Patna, Bihar, India.

Pradeep Kurup

Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, United States.

Sanjay Kumar

National Institute of Technology (NIT) Patna, Bihar, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Porter K. A beginner’s guide to fragility, vulnerability, and risk. ...
  • Martinović K, Reale C, Gavin K. Fragility curves for rainfall-induced ...
  • Wu XZ. Development of fragility functions for slope instability analysis: ...
  • Kennedy RP, Cornell CA, Campbell RD, Kaplan S, Perla HF. ...
  • Gardoni P, Der Kiureghian A, Mosalam KM. Probabilistic capacity models ...
  • Jeong S-H, Elnashai AS. Probabilistic fragility analysis parameterized by fundamental ...
  • Ebeling RM, Fong MT, Chase A, Arredondo E. Fragility analysis ...
  • Vorogushyn S, Merz B, Apel H. Development of dike fragility ...
  • Schultz MT, Gouldby BP, Simm J. Beyond the factor of ...
  • Kennedy RP, Cornell CA, Campbell RD, Kaplan S, Perla HF. ...
  • Jeong SH, Elnashai AS. Probabilistic fragility analysis parameterized by fundamental ...
  • Schultz MT, Gouldby BP, Simm JD, Wibowo JL. Beyond the ...
  • Fotopoulou SD, Pitilakis KD. Vulnerability assessment of reinforced concrete buildings ...
  • Wu XZ. Probabilistic slope stability analysis by a copula-based sampling ...
  • Hasofer AM, Lind NC. Exact and invariant second-moment code format. ...
  • Zahn JJ. Empirical failure criteria with correlated resistance variables. J ...
  • Low BK, Tang WH. Efficient spreadsheet algorithm for first-order reliability ...
  • Dash, S.R. and Jain SK. IITK-GSDMA Guidelines for seismic design ...
  • Frangopol DM. Probability concepts in engineering: emphasis on applications to ...
  • Chowdhury R, Flentje P. Role of slope reliability analysis in ...
  • Kumar DR, Samui P, Burman A, Kumar S. Seismically Induced ...
  • Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning ...
  • Kumar R, Kumar A, Ranjan Kumar D. Buckling response of ...
  • Kumar DR, Samui P, Wipulanusat W, Keawsawasvong S, Sangjinda K, ...
  • Kumar DR, Samui P, Burman A. Suitability assessment of the ...
  • Kumar DR, Samui P, Wipulanusat W, Keawsawasvong S, Sangjinda K, ...
  • Kumar DR, Samui P, Wipulanusat W, Keawsawasvong S, Sangjinda K, ...
  • Kumar DR, Samui P, Burman A, Wipulanusat W, Keawsawasvong S. ...
  • Kumar M, Biswas R, Kumar DR, Samui P, Kaloop MR, ...
  • Kumar M, Biswas R, Kumar DR, Pradeep T, Samui P. ...
  • نمایش کامل مراجع