Deep Reinforcement Learning with Immersion- and Invariance-based State Observer Control of Wave Energy Converters

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 72

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-37-6_005

تاریخ نمایه سازی: 23 تیر 1403

Abstract:

Composable life under the extensive global warming of the Earth encourages the progress of renewable energy devices and the adoption of new technologies, such as artificial intelligence. Regarding enormous potential of wave energy and its consistency, wave energy converter (WEC) plays vital role in uniform energy harvesting field. In this paper, the significant environmental changes in the ocean prompt us to propose an intelligent feedback control system to mitigate the impact of disturbances and variable wind effects on the efficacy of WECs. Deep reinforcement learning (DRL), as a powerful machine intelligence technique, is capable of identifying WECs as black-box models. Therefore, based on the DRL model, the disturbance and unmeasured state variables are simultaneously estimated in the extended state observer section. Leakage in identification data and real-time application requirements of limited number of layers in the deep neural networks are compensated by implementation of immersion and invariance-based extended state observer which improves coping with the unwanted exogenous noises as well. In the overall intelligent control system, the estimated parameters are inputted into the DRL as the actor-critic networks. The initial actor network is responsible for predicting the control action, while the subsequent critic network determines the decision criterion for evaluating the accuracy of the actor's estimated amount. Next, the output value of the critic stage is backpropagated through the layers to update the network weights. The simulation test results in MATLAB indicate the convergence of unmeasured parameters/states to the corresponding true values and the significance of newly designed intelligent DRL method.

Keywords:

Authors

H. Mohammadian KhalafAnsara

Faculty of Mechanical Engineering, University of Tabriz, East Azerbaijan, Iran

J. Keighobadi

Faculty of Mechanical Engineering, University of Tabriz, East Azerbaijan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Keighobadi J, KhalafAnsar HM, Naseradinmousavi P. Adaptive neural dynamic surface ...
  • Nielsen KM, Pedersen TS, Andersen P, Ambühl S. Optimizing control ...
  • Sadripour G, Shafaghat R, Alizadeh Kharkeshi B, Tabassom R, Mahmoudi ...
  • Arish N, Marignetti F. Evaluation of Linear Permanent Magnet Vernier ...
  • Bayani R, Farhadi M, Shafaghat R, Alamian R. Experimental evaluation ...
  • Alizadeh Kharkeshi B, Shafaghat R, Jahanian O, Alamian R. Experimental ...
  • Son D, Yeung RW. Real-time implementation and validation of optimal ...
  • Korde UA. Preliminary consideration of energy storage requirements for sub-optimal ...
  • Anderlini E, Forehand D, Bannon E, Xiao Q, Abusara M. ...
  • Babarit A, Duclos G, Clément AH. Comparison of latching control ...
  • Wu J, Yao Y, Zhou L, Göteman M. Real-time latching ...
  • Faedo N, Olaya S, Ringwood JV. Optimal control, MPC and ...
  • Hals J, Falnes J, Moan T. Constrained optimal control of ...
  • O'Sullivan AC, Lightbody G. Co-design of a wave energy converter ...
  • Li L, Yuan Z, Gao Y. Maximization of energy absorption ...
  • Jama M, Wahyudie A, Noura H. Robust predictive control for ...
  • Zou S, Abdelkhalik O, Robinett R, Korde U, Bacelli G, ...
  • Korde UA, Lyu J, Robinett III RD, Wilson DG, Bacelli ...
  • Burgaç A, Yavuz H. Fuzzy Logic based hybrid type control ...
  • Zhan S, Wang B, Na J, Li G. Adaptive optimal ...
  • Han J. From PID to active disturbance rejection control. IEEE ...
  • Gao Z. On the centrality of disturbance rejection in automatic ...
  • Zhao Z-L, Guo B-Z. On convergence of nonlinear active disturbance ...
  • Feng H, Guo B-Z. Active disturbance rejection control: Old and ...
  • Hosseini-Pishrobat M, Keighobadi J. Extended state observer-based robust non-linear integral ...
  • Guo B-Z, Zhao Z-l. On the convergence of an extended ...
  • Li J, Xia Y, Qi X, Wan H. On convergence ...
  • Zhao Z-L, Guo B-Z. Extended state observer for uncertain lower ...
  • نمایش کامل مراجع