Weakly compact weighted composition operators on pointed Lipschitz spaces
Publish place: Caspian Journal of Mathematical Sciences، Vol: 13، Issue: 1
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 61
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CJMS-13-1_004
تاریخ نمایه سازی: 30 تیر 1403
Abstract:
Let (X,d) be a pointed compact metric space with the base point x_{۰} and let \Lip((X,d),x_{۰}) (\lip((X,d),x_{۰})) denote the pointed (little) Lipschitz space on (X,d). In this paper, we prove that every weakly compact composition operator u C_{\varphi} on \Lip((X,d), x_{۰}) is compact provided that \lip((X,d),x_{۰}) has the uniform separation property, {\varphi} is a base point preserving Lipschitz self-map of X and u \in \Lip(X,d) with u(x) \neq۰ for all x \in X \backslash \{x_{۰}\}.
Keywords:
Authors
Rezvan Barzegari
Department of Mathematics, Faculty of Science, Arak University
Davood Alimohammadi
Department of Mathematics, Faculty of Science, Arak University