Weakly compact weighted composition operators on pointed Lipschitz spaces

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 61

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CJMS-13-1_004

تاریخ نمایه سازی: 30 تیر 1403

Abstract:

‎Let (X,d) be a pointed compact metric space with the base point x_{۰} and let ‎‎\Lip((X,d),x_{۰})‎ ‎‎‎(\lip((X,d),x_{۰}))‎ denote the pointed (little) Lipschitz space on ‎‎(X,d)‎‎. ‎In ‎this ‎paper,‎ ‎we prove that every weakly compact composition operator u C_{\varphi} on \Lip((X,d)‎, ‎x_{۰}) is compact provided that \lip((X,d),x_{۰}) has the uniform separation property‎, ‎{\varphi} is a base point preserving Lipschitz self-map of X and u \in \Lip(X,d) with u(x) \neq۰ for all x \in X \backslash \{x_{۰}\}.‎‎‎‎

Authors

Rezvan Barzegari

Department of Mathematics, Faculty of Science, Arak University

Davood Alimohammadi

Department of Mathematics, Faculty of Science, Arak University