On secondary subhypermodules
Publish place: The Journal of Algebra and Related Topics، Vol: 9، Issue: 1
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 59
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JART-9-1_011
تاریخ نمایه سازی: 31 تیر 1403
Abstract:
Let R be a Krasner hyperring and M be an R- hypermodule. Let \psi: S^{h}(M)\rightarrow S^{h}(M)\cup \{\emptyset\} be a function, where S^{h}(M) denote the set of all subhypermodules of M. In the first part of this paper, we introduce the concept of a secondary hypermodule over a Krasner hyperring. A non-zero hypermodule M over a Krasner hyperring R is called secondary if for every r\in R, rM=M or r^{n}M=۰ for some positive integer n. Then we investigate some basic properties of secondary hypermodules. Second, we introduce the notion of \psi-secondary subhypermodules of an R-hypermodule and we obtain some properties of such subhypermodules.
Keywords:
Authors
F. Farzalipour
Department of Mathematics, Payame Noor University(PNU), Tehran, Iran.
P. Ghiasvand
Department of Mathematics, Payame Noor University(PNU), Tehran, Iran.