Utilizing GIS and Machine Learning for Traffic Accident Prediction in Urban Environment
Publish place: Civil Engineering Journal، Vol: 10، Issue: 6
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 70
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CEJ-10-6_013
تاریخ نمایه سازی: 9 مرداد 1403
Abstract:
Traffic accident prediction is crucial to preventive measures against accidents and effective traffic management. Identifying hotspots can facilitate the selection of the most critical survey points to note the contributing features. In this research, an effort has been made to identify hotspots and predict traffic accident occurrences in an urban area. Accident data was obtained from the Rescue ۱۱۲۲ Emergency Services of Faisalabad, and hotspots were identified using Moran’s I in ArcGIS. Results showed that most hotspots were located around the General Transport Stand (GTS) area due to the maximum number of road users. The temporal investigations showed that the accident occurrence was significant from ۱ to ۲ p.m. The identified hotspots were further investigated by conducting a field survey. Essential features such as road geometric features, road furniture, and traffic data were used for developing Machine Learning Algorithms for accident prediction. Using Computer Vision, traffic data was extracted from recorded videos. Random forest, linear regression, and Decision tree algorithms were developed using Python in the Jupyter Notebook environment. The decision tree algorithm showed a maximum accuracy of ۸۴.۴%. The analysis of contributing factors revealed that road measurements had the maximum effect on accident occurrence. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۴-۰۱۰-۰۶-۰۱۳ Full Text: PDF
Keywords:
ArcGIS , Hotspots Analysis , Local Moran’s I Static , Spatial Analysis , Road Traffic Accidents , Machine Learning , Traffic Accident Prediction.
Authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :