Factors predicting patient satisfaction in the emergency department: a single-center study
Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 68
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JEPT-4-1_002
تاریخ نمایه سازی: 12 مرداد 1403
Abstract:
Objective: Patient satisfaction (PS) is a major quality assessment index for the emergency department (ED) which affects patient safety, litigation, reimbursements, and consumer satisfaction. In this study we aimed to recognize the factors affecting PS in our center. Method: Random shifts during a week were selected and all patients disposed from the ED were asked to fill out a revised and validated Persian version of the Press-Ganey questionnaire with the help of a research assistant. Results were analyzed using a linear regression model by SPSS software version ۲۱. Results: Findings reaffirmed some of the factors previously described. These included longer door to treatment area times having a negative effect on satisfaction (P < ۰.۰۰۱), and providing vivid discharge information improving PS (P < ۰.۰۰۱). Other important factors were also found that had not previously been focused on, namely cleanliness of the area (P < ۰.۰۰۰۱) and courtesy of the staff in charge of patient transfer (P = ۰.۰۳). We also found that men had a more satisfying ED experience (P = ۰.۰۰۲). Conclusion: Cultural expectations may have an important effect on PS. Thus, every institution should determine and alter the expectations most relevant to them.
Keywords:
Authors
Somaye Younesian
Department of Emergency Medicine, Ayatollah Kashani Hospital, Tehran, Iran
Reza Shirvani
Department of Emergency Medicine, Nekoee-Hedayati Hospital, Qom University of Medical Sciences, Qom, Iran
Ali Tabatabaey
Department of Emergency Medicine, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :