A General Scaling Law of Vascular Tree: Optimal Principle of Bifurcations in Pulsatile Flow

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 65

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-17-10_011

تاریخ نمایه سازی: 13 مرداد 1403

Abstract:

Murray’s law, as the best-known optimal relationship between bifurcation calibers, is obtained based on the assumption of steady-state Poiseuille blood flow and is mostly accurate in small vessels. In middle sized and large vessels such as the aorta and coronary arteries, the pulsatile nature of the flow is dominant and deviations from Murray law have been observed. In the present study, a general scaling law is proposed, which describes the optimum relationship between the characteristics of bifurcations and pulsatile flow. This scaling law takes into account the deviations from Murray law in large vessels, and proposes optimal flow (i.e. less flow resistance) for the full range of the vascular system, from the small vessels to large ones such aorta. As a general scaling law, it covers both symmetrical and asymmetrical bifurcations. One of the merits of this scaling law is that bifurcation characteristics solely depend on the Womersley number of parent vessels. The diameter ratios suggested by this scaling law are in acceptable agreement with available clinical morphometric data such as those reported for coronary arteries and aortoiliac bifurcations. A numerical simulation of pulsatile flow for several Womersley numbers in bifurcation models according to the proposed scaling law and Murray law has been performed, which suggests that the general scaling law provides less flow resistance and more efficiency than Murray law in pulsatile flow.

Authors

M. Shumal

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

M. Saghafian

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

E. Shirani

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

M. Nili-Ahmadabadi

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Alnæs, M. S., Isaksen, J., Mardal, K. A., Romner, B., ...
  • Arquizan, C., Trinquart, L., Touboul, P. J., Long, A., Feasson, ...
  • Asakura, T., & Karino, T. (۱۹۹۰). Flow patterns and spatial ...
  • Baharoglu, M. I., Lauric, A., Wu, C., Hippelheuser, J., & ...
  • Beare, R. J., Das, G., Ren, M., Chong, W., Sinnott, ...
  • Bejan, A., & Lorente, S. (۲۰۰۸). Design with Constructal Theory. ...
  • Cebral, J. R., Castro, M. A., Soto, O., Löhner, R., ...
  • Dawson, C. A., Krenz, G. S., Karau, K. L., Haworth, ...
  • Elsayed, N., Ramakrishnan, G., Naazie, I., Sheth, S., & Malas, ...
  • Finet, G., Gilard, M., Perrenot, B., Rioufol, G., Motreff, P., ...
  • Golozar, M., Sayed Razavi, M., & Shirani, E. (۲۰۱۷). Theoretical ...
  • Haghighi, A. R., Asl, M. S., & Kiyasatfar, M. (۲۰۱۵). ...
  • Haghighi, A. R., Kabdool, A. A., Asl, M. S., & ...
  • Haidar, M. A., van Buchem, M. A., Sigurdsson, S., Gotal, ...
  • Harris, J., Paul, A., & Ghosh, B. (۲۰۲۳). Numerical simulation ...
  • Horsfield, K., & Cumming, G. (۱۹۶۷). Angles of branching and ...
  • Hu, J., Zheng, Z.-F., Zhou, X. T., Liu, Y. Z., ...
  • Huo, Y., & Kassab, G. S. (۲۰۰۹). A scaling law ...
  • Huo, Y., Finet, G., Lefevre, T., Louvard, Y., Moussa, I., ...
  • Ingebrigtsen, T., Morgan, M. K., Faulder, K., Ingebrigtsen, L., Sparr, ...
  • Joh, J. H., Ahn, H. J., & Park, H. C. ...
  • Kaimovitz, B., Huo, Y., Lanir, Y., & Kassab, G. S. ...
  • Kassab, G. S., & Fung, Y. C. B. (۱۹۹۵). The ...
  • Kimura, B. J., Russo, R. J., Bhargava, V., McDaniel, M. ...
  • LaBarbera, M. (۱۹۹۰). Principles of design of fluid transport systems ...
  • Lammeren, G. W. V., Peeters, W., Vries, J. P. P. ...
  • Lefèvre, T., Morice, M. C., Sengottuvel, G., Kokis, A., Monchi, ...
  • Mayrovitz, H. N. (۱۹۸۷). An optimal flow-radius equation for microvessel ...
  • Morbiducci, U., Kok, A. M., Kwak, B. R., Stone, P. ...
  • Müller, M. D., Gregson, J., McCabe, D. J. H., Nederkoorn, ...
  • Murasato, Y., Meno, K., Mori, T., & Tanenaka, K. (۲۰۲۲). ...
  • Murray, C. D. (۱۹۲۶a). The physiological principle of minimum work ...
  • Murray, C. D. (۱۹۲۶b). The physiological principle of minimum work: ...
  • Painter, P. R., Edén, P., & Bengtsson, H. U. (۲۰۰۶). ...
  • Quarteroni, A., & Formaggia, L. (۲۰۰۴). Mathematical modelling and numerical ...
  • Razavi, M. S., Shirani, E., & Salimpour, M. (۲۰۱۴). Development ...
  • Rosen, R. (۲۰۱۳). Optimality principles in biology. Springer. https://doi.org/۱۰.۱۰۰۷/۹۷۸-۱-۴۸۹۹-۶۴۱۹- ...
  • Rossitti, S., & Löfgren, J. (۱۹۹۳). Vascular dimensions of the ...
  • San, O., & Staples, A. E. (۲۰۱۲). An improved model ...
  • Sherman, T. F. (۱۹۸۱). On connecting large vessels to small. ...
  • Tanabe, K., Hoye, A., Lemos, P. A., Aoki, J., Arampatzis, ...
  • Uylings, H. B. M. (۱۹۷۷). Optimization of diameters and bifurcation ...
  • Vlachopoulos, C., O'Rourke, M., & Nichols, W. W. (۲۰۱۱). McDonald's ...
  • Vosse, F. N. V. D., & Stergiopulos, N. (۲۰۱۱). Pulse ...
  • West, G. B., Brown, J. H., & Enquist, B. J. ...
  • Womersley, J. R. (۱۹۵۵). Method for the calculation of velocity, ...
  • Zamir, M., Wrigley, S., & Langille, B. (۱۹۸۳). Arterial bifurcations ...
  • نمایش کامل مراجع