Machine Learning Model for Reduction of Airborne Infections and Cognitive Load in a Car Cabin Service Unavailable

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 37

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JETT-10-3_003

تاریخ نمایه سازی: 22 مرداد 1403

Abstract:

The importance of medical care has grown massively, making it one of life's most essential components. People often use their vehicles in recirculation mode to provide optimum cooling in many cities with high air humidity and temperatures. On the other side, the recirculation mode of the cabin's air prevents O۲ from entering and causes a rise in CO۲. Increased health concerns, a decline in focus, and poor performance are all related to the increased CO۲ concentration brought on by human exhale and metabolism. The paper describes an experimental investigation on how carbon dioxide builds up in a car's interior as a result of metabolism and breathing by passengers; specific levels of this gas may be dangerous for everyone inside, especially drivers. It is critical to maintain cabin concentration levels within the authorized limits since inhaling this gas may impair a driver's ability to make intelligent decisions. Opening the cabin windows may be a practical, easy, and affordable way to do this. Opening the cabin windows, though might always make it less comfortable inside. As a response, given model passengers can temporarily open the windows may significantly affect how much CO۲ is present within the cabin. Using Our MVPR machine learning model and we demonstrate a GUI Framework, that can predict the forecast of CO۲ concentrations in a cabin at a particular time, temperature, and relative humidity to avoid negative health impacts caused by CO۲ gas.The importance of medical care has grown massively, making it one of life's most essential components. People often use their vehicles in recirculation mode to provide optimum cooling in many cities with high air humidity and temperatures. On the other side, the recirculation mode of the cabin's air prevents O۲ from entering and causes a rise in CO۲. Increased health concerns, a decline in focus, and poor performance are all related to the increased CO۲ concentration brought on by human exhale and metabolism. The paper describes an experimental investigation on how carbon dioxide builds up in a car's interior as a result of metabolism and breathing by passengers; specific levels of this gas may be dangerous for everyone inside, especially drivers. It is critical to maintain cabin concentration levels within the authorized limits since inhaling this gas may impair a driver's ability to make intelligent decisions. Opening the cabin windows may be a practical, easy, and affordable way to do this. Opening the cabin windows, though might always make it less comfortable inside. As a response, given model passengers can temporarily open the windows may significantly affect how much CO۲ is present within the cabin. Using Our MVPR machine learning model and we demonstrate a GUI Framework, that can predict the forecast of CO۲ concentrations in a cabin at a particular time, temperature, and relative humidity to avoid negative health impacts caused by CO۲ gas.

Authors

Bankapalli Vamsi

Department of Production Engineering, National Institute of Technology, Tiruchirappalli

Aasritha Bommadevara

Department of Instrumentation and control engineering, National Institute of Technology, Tiruchirappalli

Vanam Nagasri

Department of Production Engineering, National Institute of Technology, Tiruchirappalli

Tharun Tejavath

Department of Production Engineering, National Institute of Technology, Tiruchirappalli

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Klompas M, Baker MA, Rhee C. Airborne Transmission of SARS-CoV-2: ...
  • Angelova RA, Markov DG, Simova I, Velichkova R, Stankov P. ...
  • Kajtár L, Herczeg L. Influence of carbon-dioxide concentration on human ...
  • FROST J. Curve Fitting Using Linear and Nonlinear Regression.[Online] Statistics ...
  • Montgomery DC. Design and Analysis of Experiments Eighth Edition. Arizona ...
  • Costa V. Correlation and regression. In: Fundamentals of Statistical Hydrology ...
  • Abdul-Wahab SA, Chin Fah En S, Elkamel A, Ahmadi L, ...
  • Jacobson TA, Kler JS, Hernke MT, Braun RK, Meyer KC, ...
  • نمایش کامل مراجع