Wind speed and direction on predicting wind energy availability for a sustainable ecosystem

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 43

This Paper With 20 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_GJESM-10-4_006

تاریخ نمایه سازی: 27 مرداد 1403

Abstract:

BACKGROUND AND OBJECTIVES: Overusing renewable resources for various purposes is making it necessary to use fewer non-renewable ones to generate energy. Finding alternative renewable energy sources is essential for energy production. This study concentrated on using wind direction and speed to produce wind energy among renewable energy sources. Data on wind direction and speed were statistically analyzed to determine the current distribution pattern, which is then used to project the amount of wind energy that will be available in the future.METHODS: This study concentrated on choosing wind direction and speed to minimize the potential for current electricity generation from wind turbines, using data collected between ۱۹۸۱ and ۲۰۲۳. The wind speed and direction distribution pattern was assessed through the Weibull distribution, beta distribution, and three-parameter Weibull distribution. The Anderson-Darling test and the Kolmogorov-Smirnov test were employed in this study to determine the goodness-of-fit of a specific distribution. The forecasting analysis was expanded from ۲۰۲۴ to ۲۰۵۰ based on the three-parameter Weibull distribution and Anderson-Darling test results for future sustainable wind energy production.FINDINGS: The average wind speed was found to be ۶.۵۱ meters per second, with a standard deviation of ۰.۲۸۰ meters per second between ۱۹۸۱ and ۲۰۲۳. The wind direction varied between a minimum of ۳.۵۶ and a maximum of ۳۵۶.۴۴ degrees for the same duration. The study discovered that the three-parameter Weibull distribution caused less error in the wind speed data distribution pattern than both the Weibull distribution and beta distribution, based on the results of the Anderson-Darling and Kolmogorov-Smirnov tests. From both the tests on Weibull distribution, beta distribution, and three-parameter Weibull distribution, this study found that the Anderson-Darling test was the most appropriate for forecasting the wind speed corresponding to the wind direction for the periods between ۲۰۲۴ and ۲۰۵۰ to produce sustainable wind energy from the wind turbine.CONCLUSION: The outcomes of this study demonstrate that there is a good likelihood that the parameter Weibull distribution and Anderson-Darling test will be used in other nations to aid in the complementary integration of wind energy. This research has the potential to significantly reduce the amount of environmentally hazardous energy sources used to meet societal requirements. This study offers a trustworthy technique for assessing wind direction and speed, which helps design sustainable wind power plants, construct engineering curricula, and estimate clean, environmentally friendly energy sources.

Authors

B. Baranitharan

Department of Agricultural Engineering, Kalasalingam Academy of Research and Education, Krishnankoil ۶۲۶۱۲۶, Srivilliputhur, Virudhunagar District, Tamil Nadu, India

D. Sivakumar

Department of Agricultural Engineering, Kalasalingam Academy of Research and Education, Krishnankoil ۶۲۶۱۲۶, Srivilliputhur, Virudhunagar District, Tamil Nadu, India

M. Perarul Selvan

Department of Agricultural Engineering, Kalasalingam Academy of Research and Education, Krishnankoil ۶۲۶۱۲۶, Srivilliputhur, Virudhunagar District, Tamil Nadu, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Albani, A.; Ghani, S.S.A.; Ibrahim, M.Z.; Yusop, Z.M.; Jusoh, M.A.; ...
  • Al Mashkoor, I.A., (۲۰۲۲). The impact of green activity-based costing ...
  • Al‐Muhaini, M.; Bizrah, A.; Heydt, G.; Khalid, M., (۲۰۱۹). Impact ...
  • Azad, H.B.; Mekhilef, S.; Ganapathy, V.G., (۲۰۱۴). Long-term wind speed ...
  • Baranitharan, B.; Sivapragasam, C.; Rajesh, K., (۲۰۲۱). Energy demand prediction ...
  • Baranitharan, B.; Sivapragasam, C.; Rajesh, K., (۲۰۲۲). Identification of appropriate ...
  • Bhardwaj, S.A., (۲۰۱۳). Indian nuclear power programme–past, present and future. Sadhana. ۳۸(۵): ...
  • Boutsika, T.; Santoso, S., (۲۰۱۳). Quantifying the effect of wind ...
  • Cavazzi, S.; Dutton, A.G., (۲۰۱۶). An offshore wind energy geographic ...
  • Chacko, N., (۲۰۲۲). Exploring the offshore wind resource potential of ...
  • Chandrasekaran, S.; Swamy, P.S., (۲۰۰۲). Biomass, litterfall and aboveground net ...
  • Dallas, S.; Stock, A.; Hart, E., (۲۰۲۴). Control-oriented modelling of ...
  • Erdiwansyah, E.; Gani, A.; Mamat, R.; Mahidin, M.; Sudhakar, K.; ...
  • Gaumond, M.; Réthoré, P.E.; Ott, S.; Pena, A.; Bechmann, A.; ...
  • Gul, M.; Guneri, A.F.; Baskan, M., (۲۰۱۸). An occupational risk ...
  • Hulio, Z.H.; Jiang, W., (۲۰۲۰). Does wind speed effects performance ...
  • Jacobson, M.Z.; Delucchi, M.A., (۲۰۱۱). Providing all global energy with ...
  • Jaber, S., (۲۰۱۳). Environmental impacts of wind energy. J. Clean Energy ...
  • Jeon, S.; Kim, B.; Huh, J., (۲۰۱۵). Comparison and verification ...
  • Kaur, S.; Brar, Y.S.; Dhillon, J.S., (۲۰۲۱). Short-term hydro-thermal-wind-solar power ...
  • Kassem, Y.; Gökçekuş, H.; Çamur, H., (۲۰۱۸). Economic assessment of ...
  • Li, Y.; Huang, X.; Tee, K.F.; Li, Q.; Wu, X.P., ...
  • Lin, X.M.; Kireeva, N.; Timoshin, A.V.; Naderipour, A.; Abdul-Malek, Z.; ...
  • Majid, M., (۲۰۲۰). Renewable energy for sustainable development in India: ...
  • Ministry of New and Renewable Energy (MNRE) (۲۰۲۰). Annual Report ...
  • Murty, S.; Nagpal, R., (۲۰۲۰). Measuring output-based technical efficiency of ...
  • Naderipoura, A.; Abdul-Maleka, Z.; Nasrib, S.; Arabi, S.; Nowdehc, H.K.; ...
  • Naderipour, A.; Kamyab, H.; Klemeš, J.J.; Ebrahimi, R.; Chelliapan, S.; ...
  • Natarajan, N.; Rehman, S.; Shiva, N.S.; Vasudevan, M., (۲۰۲۱). Evaluation ...
  • Navas, R.K.B.; Prakash, S.; Sasipraba, T., (۲۰۲۰). Artificial Neural Network ...
  • Oyedepo, S.O.; Adaramola, M.S.; Paul, S.S., (۲۰۱۲). Analysis of wind ...
  • Politis, E.S.; Prospathopoulos, J.; Cabezon, D.; Hansen, K.S.; Chaviaropoulos, P.K.; ...
  • Prakash, S.V.J.; Dhal, P.K., (۲۰۲۱). Investigation of wind renewable energy ...
  • Raj, A.S.; Oliver, D.H.; Srinivas, Y.; Viswanath, J., (۲۰۱۷). Wavelet ...
  • Rao, K.R., (۲۰۱۹). Wind energy for power generation: meeting the challenge ...
  • Ren, G.; Liu, J.; Wan, J.; Li, F.; Guo, Y.; ...
  • Sajid, M.J.; Yu, Z.; Rehman, S.A., (۲۰۲۲). The coal, petroleum, ...
  • Sanchez Gomez, M.; Lundquist, J.K., (۲۰۲۰). The effect of wind ...
  • Shukla, K.K.; Natarajan, N.; Vasudevan, M., (۲۰۲۳). Comparison of wind ...
  • Sivakumar, D., (۲۰۲۰). Pollution reduction and electricity production from dairy ...
  • Sivakumar, D., (۲۰۲۱). Wastewater treatment and bioelectricity production in microbial ...
  • Solaun, K.; Cerdá, E., (۲۰۲۰). Impacts of climate change on ...
  • Soni, J.; Bhattacharjee, K., (۲۰۲۴). Multi-objective dynamic economic emission dispatch ...
  • Sørensen, J.N.; Larsen, G.C.; Cazin-Bourguignon, A., (۲۰۲۱), May. Production and ...
  • Sorknæs, P.; Djørup, S.R.; Lund, H.; Thellufsen, J.Z., (۲۰۱۹). Quantifying ...
  • Srinivas, B.A.; Kachhwaha, S.S.; Nagababu, G., (۲۰۲۲). Wind speed trend ...
  • Teimourian, H.; Abubakar, M.; Yildiz, M.; Teimourian, A., (۲۰۲۲). A ...
  • Valsaraj, P.; Alex Thumba, D.; Satheesh Kumar, K., (۲۰۲۲). Spatio-temporal ...
  • van Leeuwen, L.B.; Cappon, H.J.; Keesman, K.J., (۲۰۲۱). Urban bio-waste ...
  • Wang, Y.; Guo, Y.; Du, Y.; Xu, W., (۲۰۲۳). Flexible ...
  • Zhang, R., (۲۰۲۰). The role of the transport sector in ...
  • Zhao, P.; Xu, W.; Liu, A.; Wu, W.; Wang, J.; ...
  • نمایش کامل مراجع