A new improved fruit fly optimization algorithm based on particle swarm optimization algorithm for function optimization problems
Publish place: Journal of Mahani Mathematical Research، Vol: 13، Issue: 2
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 233
This Paper With 19 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_KJMMRC-13-2_006
تاریخ نمایه سازی: 30 مرداد 1403
Abstract:
The Fruit Fly Optimization algorithm is an intelligent optimization algorithm. To improve accuracy, convergence speed, as well as jumping out of local optimum, a modified Fruit Fly Optimization algorithm (MFFOV) is proposed in this paper. The proposed algorithm uses velocity in particle swarm optimization and improves smell based on dimension and random perturbations. As a result of testing ten benchmark functions, the convergence speed and accuracy are clearly improved in Modified Fruit Fly Optimization (MFFOV) compared to algorithms of Fruit Fly Optimization (FFO), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Teaching-Learning-Based Optimization (TLBO), Genetic Algorithms (GA), Gravitational Search Algorithms (GSA), Differential Evaluations (DEs) and Hunter–Prey Optimizations (HPOs). A performance verification algorithm is also proposed and applied to two engineering problems. Test functions and engineering problems were successfully solved by the proposed algorithm.
Keywords:
Authors
Reza Etesami
Department of Statistics, Faculty of Mathematics & Computer, Shahid Bahonar University of Kerman, Kerman, Iran
Mohsen Madadi
Department of Statistics, Faculty of Mathematics & Computer, Shahid Bahonar University of Kerman, Kerman, Iran
Farshid Keynia
Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :