Ulam stability of \wp-mild solutions for \psi-Caputo-type fractional semilinear differential equations

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 158

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJNAA-16-3_001

تاریخ نمایه سازی: 7 شهریور 1403

Abstract:

We study in this paper the existence and uniqueness of solutions to initial value problems for semilinear differential equations involving \psi-Caputo differential derivatives of an arbitrary l\in (۰,۱), using the fixed theorem. We do analyse further the M-L-U-H stability and the M-L-U-H-R stability. Then we conclude with an example to illustrate the result.

Authors

Asmaa Baihi

LMACS Laboratory, Sultan Moulay Slimane University, Beni Mellal, Morocco

Ahmed Kajouni

LMACS Laboratory, Sultan Moulay Slimane University, Beni Mellal, Morocco

Khalid Hilal

LMACS Laboratory, Sultan Moulay Slimane University, Beni Mellal, Morocco

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • M.S. Abdo, S.K. Panchal, and A.M. Saeed, Fractional boundary value ...
  • M.R. Abdollahpour and M.T. Rassias, Hyers-Ulam stability of hypergeometric differential ...
  • M.R. Abdollahpour, R. Aghayari, and M.T. Rassias, Hyers-Ulam stability of ...
  • J. Aczel and J. Dhombres, Functional Equations in Several Variables, ...
  • Y. Adjabi, F. Jarad, and T. Abdeljawad, On generalized fractional ...
  • R.P. Agarwal, H. Zhou, and Y. He, Existence of fractional ...
  • R. Almeida, A Caputo fractional derivative of a function with ...
  • R. Almeida, A.B. Malinowska, and M.T.T. Monteiro, Fractional differential equations ...
  • R. Almeida, M. Jleli, and B. Samet, A numerical study ...
  • S. Asawasamrit, A. Kijjathanakorn, S.K. Ntouya, and J. Tariboon, Nonlocal ...
  • D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. ...
  • L. Cadariu, Stabilitatea Ulam–Hyers–Bourgin Pentru Ecuatii Functionale, Ed. Univ. Vest ...
  • S. Czerwik, Functional Equations and Inequalities in Several Variables, World ...
  • S. Czerwik, On the stability of the quadratic mapping in ...
  • K. Deng, Exponential decay of solutions of semilinear parabolic equations ...
  • K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes ...
  • Z. Gajda, On stability of additive mappings, Int. J. Math. ...
  • L. Gaul, P. Klein, and S. Kemple, Damping description involving ...
  • K. Hilal and A. Kajouni, Boundary value problems for hybrid ...
  • D.H. Hyers, G. Isac, and T.M. Rassias, Stability of Functional ...
  • D.H. Hyers and T.M. Rassias, Approximate homomorphisms, Aeque. Math. ۴۴ ...
  • F. Jarad and T. Abdeljawad, Generalized fractional derivatives and Laplace ...
  • O.K. Jaradat, A. Al-Omari, and S. Momani, Existence of the ...
  • S.M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis, ...
  • S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, ...
  • S.-M. Jung, M.T. Rassias, and C. Mortici, On a functional ...
  • S.-M. Jung and M.T. Rassias, A linear functional equation of ...
  • S.-M. Jung, D. Popa, and M.T. Rassias, On the stability ...
  • P. Kannappan, Functional Equations and Inequalities with Applications, Springer, ۲۰۰۹ ...
  • R.A. Khan and K. Shah, Existence and uniqueness of solutions ...
  • V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Academic ...
  • Y.-H. Lee, S. Jung, and M.T. Rassias, Uniqueness theorems on ...
  • Y. -H. Lee, S. Jung, and M.T. Rassias, On an ...
  • H. Liu and J.-Ch. Chang, Existence for a class of ...
  • Z.H. Liu and J.H. Sun, Nonlinear boundary value problems of ...
  • H. Lmou, K. Hilal, and A. Kajouni, A new result ...
  • F. Mainardi, Fractional diffusive waves in viscoelastic solids, J.L. Wegner, ...
  • F. Mainardi, P. Paraddisi, and R. Gorenflo, Probability distributions generated ...
  • R. Metzler and J. Klafter, Boundary value problems for fractional ...
  • K.S. Miller and B. Ross, An Introduction to the Fractional ...
  • C. Mortici, S. Jung, and M.T. Rassias, On the stability ...
  • C. Park and M.T. Rassias, Additive functional equations and partial ...
  • A. Pazy, Semigroups of Linear Operators and Applications to Partial ...
  • Th. M. Rassias, Functional Equations and Inequalities, Kluwer Academic Publishers, ...
  • P.K. Sahoo and P. Kannappan, Introduction to Functional Equations, CRC ...
  • B. Samet and H. Aydi, Lyapunov-type inequalities for an anti-periodic ...
  • S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and ...
  • J. Sousa and E.C. de Oliveira, A Gronwall inequality and ...
  • A. Suechoei and P.S. Ngiamsunthorn, Existence uniqueness and stability of ...
  • W. Smajdor, Note on a Jensen type functional equation, Publ. ...
  • T. Trif, On the stability of a functional equation deriving ...
  • J. Wang, Some further generalization of the Ulam-Hyers-Rassias stability of ...
  • J. Wang and Y. Zhou, Mittag-Leffler–Ulam stabilities of fractional evolution ...
  • J. Wu, X. Zhang, L. Liu, Y. Wu, and Y. ...
  • H. Yang, Existence of mild solutions for a class of ...
  • Y. Zhou and F. Jiao, Existence of mild solutions for ...
  • S. Zorlu and A. Gudaimat, Approximate controllability of fractional evolution ...
  • نمایش کامل مراجع