Robust Scheduling of Unbalanced Microgrids for Enhancing Resilience by Outage Management Strategy
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 54
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JOAPE-13-2_001
تاریخ نمایه سازی: 10 شهریور 1403
Abstract:
Microgrid operators (MGOs) try to restore as much demand as possible when they are faced with electrical power outages corre-sponding to extreme events. This work suggests an outage management strategy (OMS) to improve microgrid resilience by using two optimal actions that are distribution feeder reconfiguration (DFR) and scheduling of the distributed energy resources (DERs). Later happening a line fault, the radial network topology is determined by the proposed model using an evaluation of the inci-dence matrix. The presented work handles the uncertain behavior of non-dispatchable DERs and the electrical loads which model by the robust optimization approach. To expand the flexibility of the proposed model, the demand response program (DRP) is treated as the curtailed demand. The aim of optimization is the minimization of the total cost for dispatchable DER operation and electrical load decrease. The recommended robust linear problem (RLP) model is simulated by the CPLEX solver in GAMS software. Applying the suggested model in the ۶۹-bus unbalanced test system demonstrate that the proposed model averagely decreases total operation cost and execution time by ۱۰.۶۲% and ۲۲.۲۳% on all scenarios in comparison with the de-terministic model.
Keywords:
Authors
Shirkooh Panjeie
Department of Electrical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
Ahmad Fakharian
Department of Electrical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
Mostafa Sedighizadeh
Faculty of Electrical Engineering, Shahid Beheshti University, Evin, Tehran, Iran.
Alireza Sheikhi fini
Department of Power Systems Operation and Planning, Niroo Research Institute, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :