Transient Dynamics of a Porous Sphere in a Linear Fluid

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 25

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-17-11_001

تاریخ نمایه سازی: 12 شهریور 1403

Abstract:

This article describes the unsteady translational motion of a porous sphere with slip-surface in a quiescent viscous fluid. Apart from its radius  a and density ρs , the particle is characterized by its permeability parameter γ , slip-length l and effective viscosity-ratio ϵ for interior flow. The Reynolds number for the system is assumed to be small leading to negligible convective contribution, though the transient inertia for both the liquid and the solid is comparable to viscous forces. The resulting linearized but unsteady flow-equations for both inside and outside the porous domain are solved in time-invariant frequency domain by satisfying appropriate boundary conditions. The analysis ultimately renders frequency-dependent hydrodynamic friction for the suspended body. The frictional coefficient is computed under both low and high frequency limit for different values of γ,  l and ϵ so that the findings can be compared to known results with impermeable surface. Moreover, the parametric exploration shows that the sphere acts like a no-slip body even with non-zero l if aγ ≫ ۱/√ϵ . Scaling arguments from a novel boundary layer theory for flow inside porous media near interfaces explain this rather unexpected observation. Also, computed fluid resistance is incorporated in equation of motion for the particle to determine its time-dependent velocity response to a force impulse. This transient response shows wide variability with ρs, γ,  l and ϵ insinuating the significance of the presented study. Consequently, the paper concludes that slip and permeability should be viewed as crucial features of submicron particles if unexpected variability is to be explained in nano-scale phenomena like nano-fluidic heat conduction or viral transmission. Thus, the theory and findings in this paper will be immensely useful in modeling of nano-particle dynamics.

Authors

P. Cano Fossi

Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, ۷۹۴۰۹, USA

P. Nourian

Department of Chemical Engineering, Texas Tech University, Lubbock, TX, ۷۹۴۰۹, USA

R. Khare

Department of Chemical Engineering, Texas Tech University, Lubbock, TX, ۷۹۴۰۹, USA

S. Bhattacharya

Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, ۷۹۴۰۹, USA

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Chen, G. (۲۰۰۱). Ballistic-diffusive heat-conduction equations. Physical Review Letters ۸۶, ...
  • Dixon, A. G., Taskin, M. E., Nijemeisland, M., & Stitt, ...
  • Eastman, J. A., Choi, S. U. S., Li, S., Yu, ...
  • Fahy, J. V., & Dickey, B. F. (۲۰۱۰). Airway mucus ...
  • Furst, E. M., & Squires, T. M. (۲۰۱۷). Microrheology. Oxford ...
  • Higdon, J., & Kojima, M. (۱۹۸۱). On the calculation of ...
  • Huang, H. Y., & Keh, H. J. (۲۰۱۵). Diffusiophoresis in ...
  • Karim, M., Kohale, S. C., Indei, T., Schieber, J. D. ...
  • Karim, M., Indei, T., Schieber, J. D., & Khare, R. ...
  • Keh, H. J., & Chou, J. (۲۰۰۴) Creeping motions of ...
  • Keh, H., & Lu, Y. (۲۰۰۵). Creeping motions of a ...
  • Kincaid, J. M., & Cohen, E. G. D. (۲۰۰۲). Nano- ...
  • Looker, J. R., & Carnie, S. L. (۲۰۰۴). The hydrodynamics ...
  • Marconnet, A. M., Panzer, M. A., & Goodson, K. E. ...
  • Masliyah, J. H., Neale, G., Malysa, K., Theodorus, G. M. ...
  • Mason, T. G. (۲۰۰۰). Estimating the viscoelastic moduli of complex ...
  • Mason, T. G., & Weitz, D. A. (۱۹۹۵). Optical measurements ...
  • Mundargi, R. C., M. G. Potroz, S. Park, H. Shirahama, ...
  • Navardi, S., & Bhattacharya, S. (۲۰۱۳) General methodology to evaluate ...
  • Navardi, S., Bhattacharya, S., & Wu, H. (۲۰۱۵) Stokesian simulation ...
  • Neale, G., Epstein, N., & Nader, W. (۱۹۷۳). Creeping flow ...
  • Nourian, P., Islam, R., & Khare, R. (۲۰۲۱). Implementation of ...
  • Prakash, J., & Raja Sekhar, G. (۲۰۱۲). Arbitrary oscillatory Stokes ...
  • Prakash, J., & Sekhar, G. (۲۰۱۷). Slow motion of a ...
  • Premlata, A. R., & Wei, H. H. (۲۰۱۹). The basset ...
  • Schuster, B. S., Suk, J. S., Woodworth, G. F., J. ...
  • Solsvik, J., & Jakobsen, H. A. (۲۰۱۱). Modeling of multicomponent ...
  • Tsai, S. C., & Lee, E. (۲۰۱۹). Diffusiophoresis of a ...
  • Vahedi, A., & Gorczyca, B. (۲۰۱۲). Predicting the settling velocity ...
  • Vainshtein, P., & Shapiro, M. (۲۰۰۹). Forces on a porous ...
  • Wei, Y. K., & Keh, H. J. (۲۰۰۴). Diffusiophoretic mobility ...
  • Yao, X., Ng, C. H., Teo, J. R. A., Marcos, ...
  • Yu, Q., & Kaloni, P. (۱۹۸۸). A Cartesian-tensor solution of ...
  • نمایش کامل مراجع