بکارگیری مدل مبتنی بر ترنسفورمر برای تشخیص فعالیت های غیرطبیعی در ویدئو
Publish place: Journal Of Modeling in Engineering، Vol: 22، Issue: 76
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: Persian
View: 49
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JME-22-76_017
تاریخ نمایه سازی: 17 شهریور 1403
Abstract:
با توجه به افزایش روز افزون حجم ویدئوهای تولید شده توسط دوربین های امنیتی و نظارتی در مکانهای شخصی و عمومی، نظارت بر فعالیت های موجود در ویدئو امری حیاتی می باشد. بسیاری از نظارتهای ویدئویی برای بررسی صحت عملکرد و هشدار هنگام وقوع یا انجام اعمال غیرطبیعی میباشد. در این راستا، مدل های هوشمند مختلفی جهت تشخیص فعالیت های موجود در ویدئو ارائه گردیده است. با توجه به پیشرفت های اخیر در حوزه هوش مصنوعی و به خصوص یادگیری عمیق، در این مقاله، مدلی مبتنی بر شبکه ترنسفورمر ارائه می گردد. در این راستا، به منظور کاهش میزان محاسبات، نقاط کلیدی بدن مورد استفاده قرار می گیرند. تعداد ۱۵ نقطه کلیدی بدن به مدل ترنسفورمر وارد می گردند تا با تکیه بر پردازش موازی این شبکه در حالت آموزش و نیز مکانیسم خودتوجهی، سرعت و دقت مدل افزایش داده شود. نتایج تجربی بر روی پایگاه داده عمومی JHMDB حاکی از بهبود دقت تشخیص فعالیت های غیرطبیعی نسبت به مدل های پایه می باشد.
Keywords:
Authors
امیر محمد احمدی
دانشجوی کارشناسی ارشد، دانشکده برق و کامپیوتر، دانشگاه سمنان، سمنان، ایران
کورش کیانی
دانشیار، دانشکده برق و کامپیوتر، دانشگاه سمنان، سمنان، ایران
راضیه راستگو
استادیار، دانشکده برق و کامپیوتر، دانشگاه سمنان، سمنان، ایران
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :