Weighted fuzzy C means and enhanced adaptive neuro-fuzzy inference based chronic kidney disease classification
Publish place: Journal of Fuzzy Extension & Applications، Vol: 5، Issue: 1
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 167
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JFEA-5-1_008
تاریخ نمایه سازی: 18 شهریور 1403
Abstract:
Chronic nephritic sickness is another name for Chronic Kidney Disease (CKD). Numerous complications, such as elevated blood levels, anemia, weak bones, and nerve damage, constitute a problem. It is usually possible to prevent chronic uropathy from getting worse by early identification and treatment. To circumvent these problems, current research has presented the Fruit Fly Optimization Algorithm (FFOA) and effective Multi-Kernel Support Vector Machine (MKSVM) for illness classification. Finding the best features from a collection is usually done using FFOA. MKSVM categorizes medical data using chosen dataset criteria. The accuracy of the classifier will be impacted by any range of variations in data obtained for this study. MKSVM continues to yield more incorrectly classified findings. To resolve those problems, a preprocessing step based on min-max normalization is used to normalize the input CKD data values scale. Then, significant features will be selected using Improved FFOA (IFFOA). The selected features will be clustered using Weighted Fuzzy C Means clustering (WFCM) to predict the class label of the data sample and reduce the misclassification results. Finally, as normal or abnormal, CKD classification will be performed using the Enhanced Adaptive Neuro Fuzzy Inference System (EANFIS). The suggested strategy efficacy is demonstrated by findings in fields of recall, accuracy, precision, and f-measure.
Keywords:
Multi-Kernel Support Vector Machine , Fruit Fly Optimization Algorithm , Chronic kidney disease , Significant Features , Weighted fuzzy c means , adaptive neuro-fuzzy inference system
Authors
Maria Lincy Jacquline
Department of Computer Science, Bishop Appasamy College of Arts and Science, Coimbatore, TamiNadu, India.
Natarajan Sudha
Department of Computer Science, Bishop Appasamy College of Arts and Science, Coimbatore, India.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :