Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams
Publish Year: 1394
نوع سند: مقاله ژورنالی
زبان: English
View: 36
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVLJ-3-1_002
تاریخ نمایه سازی: 23 شهریور 1403
Abstract:
A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical and geometrical parameters. These parameters contain Web width, Effective depth, Shear span to depth ratio, Concrete compressive strength, Main reinforcement ratio, Horizontal shear reinforcement ratio and Vertical shear reinforcement ratio.The ANFIS model is developed based on ۲۱۴ experimental database obtained from the literature. The data used in the present study, out of the total data, ۸۰% was used for training the model and ۲۰% for checking to validate the model. The results indicated that ANFIS is an effective method for predicting the shear strength of reinforced concrete (RC) deep beams and has better accuracy and simplicity compared to the empirical methods.
Keywords:
Authors
Atieh Khajeh
M.S student, Department of Civil Engineering, University of Sistan and Baluchestan, zahedan, Iran
Seyed Roohollah Mousavi
Assistant Professor, Department of Civil Engineering, University of Sistan and Baluchestan, zahedan, Iran
Mehrollah Rakhshani Mehr
Assistant Professor, Department of Civil Engineering, University of Alzahra, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :