Hegel’s Internal Engine – Free Energy Minimization at Play in the Phenomenology of Spirit
Publish place: Philosophical Investigations، Vol: 18، Issue: 48
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: Persian
View: 34
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_PHILO-18-48_005
تاریخ نمایه سازی: 24 شهریور 1403
Abstract:
This paper bridges contemporary neuroscience theories and Hegelian philosophy, centering on Karl Friston’s Free Energy Principle (FEP). Neuroscience models like the Bayesian brain hypothesis and predictive coding depict the brain as a predictive machine, echoing Hermann von Helmholtz’s concept of unconscious inference, where perception is shaped by prior knowledge. The FEP, rooted in information theory and statistical physics, suggests organisms minimize sensory surprise through unconscious and active inference, providing a model for behavior and explaining the purposiveness of biological systems. Some scholars assert that Georg W. F. Hegel’s view of living beings in his Philosophy of Nature aligns with the FEP, portraying them as purposive and enactive systems. This paper extends this idea, proposing that Hegel’s 'System of Science' in the Phenomenology of Spirit functions as a free energy-minimizing system. It discusses predictive coding and the FEP, establishing criteria for a system that minimizes free energy, and applies these criteria to Hegel’s work. The paper argues that the dialectical narrative in the Phenomenology operates as a reflective system driven to minimize logical or conceptual free energy, ultimately advancing the spirit towards absolute spirit. This Hegelian predictive model generates expectations essential for dialectical progression.
Keywords:
Authors
Caius R Gibeily
Department of Biological and Biomedical Sciences and Department of Philosophy, Emory University, USA
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :