Hand Vein Recognition via Discriminative Convolutional Sparse Coding
Publish place: Journal of Modeling & Simulation in Electrical & Electronics Engineering، Vol: 2، Issue: 1
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 38
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MSEEE-2-1_004
تاریخ نمایه سازی: 2 مهر 1403
Abstract:
Personal identification based on vein pattern is one of the latest biometric approaches that have attracted lots of attention. Besides, Convolutional Sparse Coding (CSC) is a popular model in the signal and image processing communities, resolving some limitations of the traditional patch-based sparse representations. As most existing CSC algorithms are suited for image restoration, we present a novel discriminative model based on CSC for dorsal hand vein recognition in this paper. The proposed method, discriminative local block coordinate descent (D-LoBCoD), is based on extending the LoBCoD algorithm by incorporating the classification error into the objective function that considers the performance of a linear classifier and the representational power of the filters simultaneously. Thus, for training, in each iteration, after updating the sparse coefficients and convolutional filters, we minimize the classification error by updating the classifier’s parameters according to the label information. Finally, after training, the label of the query image will be determined by the trained classifier. One thousand two hundred dorsal hand vein images taken from ۱۰۰ individuals are used to verify the validity of the proposed methods. The experimental results show that our method outperforms other competing methods. Further, we demonstrate that our proposed method is less dependent on the number of training samples because of capturing more representative information from the corresponding images.
Keywords:
Convolutional Sparse Coding , Dorsal hand vein pattern , Image Classification , region of interest , Sparse Representation
Authors
Ali Nozaripour
Department of Electrical and Computer Engineering Hakim University, Sabzevar,Iran.
Hadi Soltanizadeh
Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :