A Deep Human Action Representation For Retrieval Application

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 37

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MSEEE-2-1_003

تاریخ نمایه سازی: 2 مهر 1403

Abstract:

Human action retrieval as a challenging research area has wide-spreading applications in surveillance, search engines, and human-computer interactions. Current methods seek to represent actions and create a model with global and local features. These methods do not consider the semantics of actions to create the model, so they do not have proper final retrieval results. Each action is not considered a sequence of sub-actions, and their model is created using scattered local or global features. Furthermore, current action retrieval methods ignore incorporating Convolutional Neural Networks (CNN) in the representation procedure due to a lack of training data for training them. At the same time, CNNs can help them improve the final representation. In the present paper, we propose a CNN-based human action representation method for retrieval applications. In this method, the video is initially segmented into sub-actions to represent each action based on their sequence using keyframes extracted from the segments. Then, the sequence of keyframes is given to a pre-trained CNN to extract deep spatial features of the action. Next, a ۱D average pooling is designed to combine the sequence of spatial features and represent the temporal changes by a lower-dimensional vector. Finally, the Dynamic Time Wrapping technique is used to find the best match between the representation vectors of two videos. Experiments on real video datasets for both retrieval and recognition applications indicate how created models for the actions can outperform other representation methods.

Authors

Mohsen Ramezani

Department of Computer Science, University of Kurdistan, Sanandaj, Iran

Fardin Akhlaghian Tab

Department of Computer Engineering University of Kurdistan Sanandaj, Iran

Farzin Yaghmaee

Department of Electrical and Computer Engineering Semnan University Semnan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ramezani M, Yaghmaee F. Motion pattern-based representation for improving human ...
  • Veinidis C, Pratikakis I, Theoharis T. Unsupervised human action retrieval ...
  • Qin J, Liu L, Yu M, Wang Y, Shao L. ...
  • Ding S, Li G, Li Y, Li X, Zhai Q, ...
  • Zhang L, Wang Z, Yao T, Mei T, Feng DD. ...
  • Zong M, Wang R, Chen X, Chen Z, Gong Y. ...
  • Ramezani M, Yaghmaee F. A review on human action analysis ...
  • Zhao S, Chen L, Yao H, Zhang Y, Sun X. ...
  • Naeem HB, Murtaza F, Yousaf MH, Velastin SA. T-VLAD: Temporal ...
  • Jiang X, Zhong F, Peng Q, Qin X. Action recognition ...
  • Liu X, Li Y. Research on human action recognition based ...
  • Jones S, Shao L, Du K. Active learning for human ...
  • Junejo IN, Dexter E, Laptev I, Perez P. View-independent action ...
  • Junejo IN, Dexter E, Laptev I, PÚrez P. Cross-view action ...
  • Shao L, Zhen X, Tao D, Li X. Spatio-temporal Laplacian ...
  • Veinidis C, Pratikakis I, Theoharis T. Querying ۳D mesh sequences ...
  • Yamato J, Ohya J, Ishii K. Recognizing human action in ...
  • Efros AA, Berg AC, Mori G, Malik J. Recognizing action ...
  • Lin Z, Jiang Z, Davis LS. Recognizing actions by shape-motion ...
  • Yilmaz A, Shah M. Matching actions in the presence of ...
  • Zhu F, Shao L, Lin M. Multi-view action recognition using ...
  • Shao L, Wu D, Chen X. Action recognition using correlogram ...
  • Choi J, Jeon WJ, Lee SC. Spatio-temporal pyramid matching for ...
  • Shao L, Chen X. Histogram of Body Poses and Spectral ...
  • Shao L, Liu L, Yu M. Kernelized multiview projection for ...
  • Ramezani M, Yaghmaee F. Retrieving human action by fusing the ...
  • Sharif M, Khan MA, Zahid F, Shah JH, Akram T. ...
  • Sahoo SP, Ari S. On an algorithm for human action ...
  • Dollár P, Rabaud V, Cottrell G, Belongie S. Behavior recognition ...
  • Ramezani M, Yaghmaee F. A novel video recommendation system based ...
  • Chen S, Sun Z, Zhang Y, Li Q. Relevance feedback ...
  • Shao L, Jones S, Li X. Efficient search and localization ...
  • Jones S, Shao L. Action retrieval with relevance feedback on ...
  • Jiang YG, Li Z, Chang SF. Modeling scene and object ...
  • Laptev I. On space-time interest points. International journal of computer ...
  • Scovanner P, Ali S, Shah M. A ۳-dimensional sift descriptor ...
  • Jones S, Shao L. Unsupervised spectral dual assignment clustering of ...
  • Klaser A, Marszałek M, Schmid C. A Spatio-temporal descriptor based ...
  • Jones S, Shao L. Content-based retrieval of human actions from ...
  • Zhen X, Shao L, Tao D, Li X. Embedding motion ...
  • Ji R, Yao H, Sun X. Actor-independent action search using ...
  • Yu G, Yuan J, Liu Z. Unsupervised trees for human ...
  • Páez F, Vanegas JA, González FA. Online multimodal matrix factorization ...
  • Ramezani M, Yaghmaee F. Eliminating the Repetitive Motions as a ...
  • Barnachon M, Bouakaz S, Boufama B, Guillou E. A real-time ...
  • Tang J, Shao L, Zhen X. Human action retrieval via ...
  • Laptev I, Marszalek M, Schmid C, Rozenfeld B. Learning realistic ...
  • Paez F, Vanegas JA, Gonzalez FA. An evaluation of NMF ...
  • Bulbul MF, Jiang Y, Ma J. Human action recognition based ...
  • Choi J, Jeon WJ, Lee SC. Spatio-temporal pyramid matching for ...
  • Grauman K, Darrell T. Approximate correspondences in high dimensions. Advances ...
  • Bregonzio M, Gong S, Xiang T. Recognising action as clouds ...
  • Afza F, Khan MA, Sharif M, Kadry S, Manogaran G, ...
  • Ullah A, Muhammad K, Haq IU, Baik SW. Action recognition ...
  • Muhammad K, Ullah A, Imran AS, Sajjad M, Kiran MS, ...
  • Khan MA, Javed K, Khan SA, Saba T, Habib U, ...
  • Dai C, Liu X, Lai J. Human action recognition using ...
  • Tu Z, Xie W, Qin Q, Poppe R, Veltkamp RC, ...
  • Berlin SJ, John M. Particle swarm optimization with deep learning ...
  • Wang J, Shao Z, Huang X, Lu T, Zhang R, ...
  • نمایش کامل مراجع