An Adaptive Neuro Fuzzy Inference System based Method for DC Fault Recognition in VSC-MTDC System
Publish place: Journal of Modeling & Simulation in Electrical & Electronics Engineering، Vol: 3، Issue: 1
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 33
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MSEEE-3-1_004
تاریخ نمایه سازی: 2 مهر 1403
Abstract:
This paper presents an Adaptive Neuro Fuzzy Inference System (ANFIS) method for recognizing the fault in a Voltage Source Converter-Multiterminal HVDC (VSC-MTDC) system. A four-terminal VSC-based HVDC system is designed in MATLAB software and used for the validation of research. The proposed scheme has advanced features that overcome the limitations of a fuzzy inference system, as it does not need an expert to provide the best performance. Artificial Neural Networks (ANNs) depend only on input and output data through the training process. ANFIS is a very effective method that combines the strengths of artificial neural networks (ANN) in learning from processes and the ability of fuzzy inference systems to deal with uncertain input. In order to protect against faults, two distinct FIS models have been developed to recognize pole-to-ground and pole-to-pole faults. The results indicate a trip signal when a fault is present, hence increasing the reliability of the system. This approach provides quick outcomes without taking any feedback from the remote end of the system.
Keywords:
Authors
Mahima Kumari
Department of Electrical Engineering, National Institute of Technology Raipur, Chhattisgarh, India.
Anamika Yadav
Department of Electrical Engineering, National Institute of Technology Raipur, Chhattisgarh, India.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :