Seismic Isolators Layout Optimization Using Genetic Algorithm Within the Pymoo Framework

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 6

This Paper With 19 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CEJ-10-8_007

تاریخ نمایه سازی: 8 مهر 1403

Abstract:

In most previous studies, seismic base isolation system optimization has mainly focused on determining isolation layer parameters. However, the subsequent steps of isolator device selection and positioning can significantly impact overall system performance. To address these shortcomings, we propose an alternative optimization approach demonstrated through two models: regular and irregular ۸-storey reinforced concrete structures. This approach utilizes the Pymoo framework and commercially available isolators to find optimal isolator layout configurations in two steps. First, using the equivalent lateral force (ELF) procedure, an initial population of seismic isolators meeting shear strain, base shear coefficient, and buckling requirements was randomly selected from suppliers' elastomeric bearing catalogs. Second, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) was used to improve the seismic response of the models under the fast nonlinear analysis (FNA) method by minimizing peak roof acceleration, inter-story drift ratio, displacement of the isolated base layer, as well as maximizing the fundamental period. The results underscore the effectiveness of this approach in improving seismic response. Compared to fixed-base structures, the optimal solutions achieved more than double the fundamental period, reduced peak roof acceleration by over ۷۰%, and diminished base shear force by approximately ۵۰%. This methodology can serve as a reference for future research across various structure types, including hybrid isolation systems and steel structures. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۴-۰۱۰-۰۸-۰۷ Full Text: PDF

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Yenidogan, C. (2021). Earthquake-Resilient Design of Seismically Isolated Buildings: A ...
  • JSSI (2024). The Japan Society of Seismic Isolation, Tokyo, Japan. ...
  • Warn, G. P., & Ryan, K. L. (2012). A review ...
  • Naeim, F., & Kelly, J. M. (1999). Design of Seismic ...
  • Shiravand, M. R., Ketabdari, H., & Rasouli, M. (2022). Optimum ...
  • Hu, G. J., Ye, K., & Tang, Z. Y. (2023). ...
  • Bridgestone. (2017). Seismic Isolation Product Line-Up. Bridgestone, Tennessee, United States. ...
  • Zhang, Z., Tian, X., & Ge, X. (2021). Dynamic characteristics ...
  • Gallardo, J. A., de la Llera, J. C., Restrepo, J. ...
  • Dai, K., Yang, Y., Li, T., Ge, Q., Wang, J., ...
  • Zhou, Z., Li, Y., & Hu, X. (2022). Analysis method ...
  • Hu, X., & Zhou, Z. (2020). Seismic analysis of a ...
  • Kazeminezhad, E., Kazemi, M. T., & Mirhosseini, S. M. (2020). ...
  • Losanno, D., Hadad, H. A., & Serino, G. (2019). Design ...
  • Ye, K., Xiao, Y., & Hu, L. (2019). A direct ...
  • Lopez-Almansa, F., Piscal, C. M., Carrillo, J., Leiva-Maldonado, S. L., ...
  • Wu, T. C. (2001). Design of base isolation system for ...
  • Mayes, R.L., Naeim, F. (2001). Design of Structures with Seismic ...
  • Keikha, H., & Amiri, G. G. (2023). Developing a simplified ...
  • Pourzeynali, S., & Zarif, M. (2008). Multi-objective optimization of seismically ...
  • Bakhshinezhad, S., & Mohebbi, M. (2020). Multi-objective optimal design of ...
  • Tsipianitis, A., & Tsompanakis, Y. (2021). Optimizing the seismic response ...
  • Tsipianitis, A., Spachis, A., & Tsompanakis, Y. (2022). Combined Optimization ...
  • Zou, Z., & Yan, Q. (2022). Artificial Intelligence Algorithm-Based Arrangement ...
  • Babaei, M., Taghaddosi, N., & Seraji, N. (2023). Optimal Design ...
  • Çerçevik, A. E., Avşar, Ö., & Hasançebi, O. (2020). Optimum ...
  • Pal, S., Hassan, A., & Singh, D. (2019). Optimization of ...
  • Dang, Y., Zhao, G. X., Tian, H. T., & Li, ...
  • Fallah, N., & Zamiri, G. (2013). Multi-objective optimal design of ...
  • Fallah, N., & Honarparast, S. (2013). NSGA-II based multi-objective optimization ...
  • Song, Z., Zhai, C., Ma, Y., Wang, Z., & Pei, ...
  • Kandemir, E. C., & Mortazavi, A. (2022). Optimization of Seismic ...
  • Ocak, A., Nigdeli, S. M., Bekdaş, G., Kim, S., & ...
  • Taymus, R. B., Aydogdu, I., Carbas, S., & Ormecioglu, T. ...
  • Öncü-Davas, S., Temür, R., & Alhan, C. (2022). Comparison of ...
  • Ocak, A., Melih Nigdeli, S., & Bekdaş, G. (2023). Optimization ...
  • Blank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in ...
  • Murota, N., Suzuki, S., Mori, T., Wakishima, K., Sadan, B., ...
  • Pan, P., Zamfirescu, D., Nakashima, M., Nakayasu, N., & Kashiwa, ...
  • GB50011-2010. (2010). Code for seismic design of buildings. Ministry of ...
  • ASCE/SEI 7-16. (2017). Minimum design loads and associated criteria for ...
  • ASCE (2024). ASCE Hazard Tool. American Society of Civil Engineers ...
  • Belbachir, A., Benanane, A., Ouazir, A., Harrat, Z. R., Hadzima-Nyarko, ...
  • نمایش کامل مراجع