Generative Artificial Intelligence and Immersive Technology for Medical Education: Opportunities and Challenges
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 41
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MEDIA-15-3_001
تاریخ نمایه سازی: 14 مهر 1403
Abstract:
Medical education is embracing digital transformation with immersive technology and artificial intelligence. These technologies have gained acceptance in education and practice to create realistic and engaging learning experiences for students and professionals. In the recent fast-growing interventions in Artificial Intelligence (AI) research, generative AI proved as a great resource for novel and realistic content, such as images, text, music, or code, based on some input or data. Integrating generative AI in immersive technologies can offer many opportunities and challenges for medical education, as well as ethical and social implications. This article focuses on the prospects of generative AI in immersive technologies for medical education and future opportunities. It also highlights some of the potential benefits and risks of generative AI in immersive technologies for medical education. It covers the enhancement of diversity and richness of the learning experiences, fostering the creativity and innovation of the learners, ensuring the quality of content and outcomes, as well as addressing ethical and legal issues. This article also stimulates further research and debate on this emerging and promising field.
Keywords:
Authors
Muhammad Zahid Iqbal
School of Computing, Engineering and Digital Technologies, Teesside University, United Kingdom
Mahmudul Hassan
School of Computing, Engineering and Digital Technologies, Teesside University, United Kingdom
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :