An Assessment of Subjective Sidewalk Attributes and Trip Factors on Walking in Neighborhood
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 31
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJTE-12-1_004
تاریخ نمایه سازی: 21 مهر 1403
Abstract:
Walkability index is widely utilized based on objective attributes to assess potential of walking. However, researches discussed that objective attributes are self-evaluated and hence subjective measurements are required to better evaluate walkability. This study claims that self-evaluation of objective attributes differs among mandatory and non-mandatory trips. This suggest that while increase of walkability either objective or subjective potentially increase walking, it does not necessarily change behavior of mode choice in peak-time mandatory trips and hence may not be helpful for solving traffic problems. As a result, a more precise study is required if a more normative set of policy making is aimed. A data collection was conducted in May ۲۰۲۳ in Kermanshah, Iran. A total of ۶۲۳ participants answered a paper questionnaire. Two logistic regression models were developed to reveal the effective variables on walking choice for mandatory and non-mandatory trips. Results explored that safety, slope, pavement, tree existence and connectivity significantly affect walking choice in mandatory trips. Whereas non-mandatory trips are under the influence of safety, slope, pavement, tree existence, connectivity, furnish and width. Overall evaluating of the result suggests that encouraging more people to walk for mandatory (work and educational) trips requires a more comprehensive plan including diverse strategies beyond sidewalks enhancement.
Keywords:
Authors
Shideh Ehteshamrad
Department of Engineering, Kermanshah University of Technology, Kermanshah, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :