A New Technology in Railroad automated data collection
Publish place: The third International Conference on Recent Advances in Railway Engineering (ICRARE2013)
Publish Year: 1392
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,142
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICRARE03_181
تاریخ نمایه سازی: 14 شهریور 1392
Abstract:
Maintenance management is becoming increasingly important for railway companies in order to safeguard their passengers while improving safety and reducing maintenance costs. One of the main requirements for the maintenance management of railroad is to assess its performance. The best way is to use a quantitative indicator of the rail performance level, so that any changes in this indicator represent the rail condition. Despite significant development of railway, there isn't any comprehensive and systematic approach to evaluate railroad that would be used in maintenance management. Hi-Rail is the most recent technology deployed in several developed countries such as United States. This technology is utilized to automatically collect condition data using tools such as laser, radar, ultra sound, and high resolution cameras. A Hi-Rail vehicle is capable of operating both on rail tracks and a conventional road. This paper reviews the technical specifications of Hi-Rail in terms of its crucial capabilities with regards to collecting data with high accuracy and precision in safe, fast, and consistent manner to be effectively applied in railroad management system. Finally, economic feasibility and superiority of this new technology versus the traditional methods are studied.
Keywords:
Authors
Fathollahi zahra
Postgraduate student, AmirKabir University of Technology
Bagheri morteza
Assistant professor, Iran University of Science & Technology
Golroo amir
Assistant professor, AmirKabir University of Technology
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :