Mean-Variance optimal portfolio selection integrated with support vector and fuzzy support vector machines
Publish place: Journal of Fuzzy Extension & Applications، Vol: 5، Issue: 3
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 173
This Paper With 35 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JFEA-5-3_008
تاریخ نمایه سازی: 5 آذر 1403
Abstract:
This study introduces a novel approach integrating a support vector machine (SVM) with an optimal portfolio construction model. Leveraging the Radial Basis Function (RBF) kernel, the SVM identifies assets with higher growth potential. However, due to inherent uncertainties, some input points may not be precisely classified into their respective classes in various applications. To mitigate the influence of noise, a new fuzzy support vector machine (NFSVM) is employed to select assets. Here, each sample point is assigned a membership value using a fuzzy membership function, as documented in existing literature [۱]. Additionally, the SVM model incorporates principal component analysis (PCA)to eliminate correlated technical indicators. Further, Markowitz’s mean-variance model (MV model) with cardinality constraints and without cardinality constraints is employed for the assets selected by SVM, FSVM, and NFSVM for optimal portfolio construction.The performance of the proposed model is experimentally assessed using a data set derived from the Nifty ۵۰ and Euro Stoxx ۵۰ index. The experimental results demonstrate that the optimal portfolio obtained from the NFSVM with the Markowitz mean-variance model outperforms the one generated by the SVM. This outcome substantiates the effectiveness and efficiency of the proposed model as an advanced approach for optimizing investment portfolios.
Keywords:
Fuzzy Support Vector Machines , Markowitz mean-variance model , portfolio optimization , Classification , prediction , Fuzzy Membership Function
Authors
Simrandeep Kaur
University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Sector ۱۶-C, Delhi,۱۱۰۰۷۸, Delhi, India.
Arti Singh
University School of Automation & Robotics, Guru Gobind Singh Indraprastha University, Surajmal Vihar, Delhi, ۱۱۰۰۹۲, Delhi, India.
Abha Aggarwal
University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, Sector ۱۶-C, Delhi, ۱۱۰۰۷۸, Delhi, India.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :