Numerical Study on Static Airtightness of Subway Vehicles with Multiple Leak Holes
Publish place: Journal of Applied Fluid Mechanics، Vol: 18، Issue: 2
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 44
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JAFM-18-2_004
تاریخ نمایه سازی: 21 آذر 1403
Abstract:
In this study, a numerical simulation of the static leakage of a subway vehicle was conducted, based on the turbulence model of k-ω Shear Stress Transport (SST). The impact of the leak hole thickness and of the slenderness ratio, on the airtightness of the vehicle is analyzed with a single leak hole, as is the influence of the number, location, slenderness ratio, and area ratio of leak holes, on the airtightness of a train with multiple leak holes. The relative errors of the numerical simulation results are smallest when the leak hole slenderness ratio is ۱:۱۶. The relative errors in cases of a single leak hole, and of multiple leak holes are ۴.۹۳% and ۳.۶۸%, respectively. The pressure relief time first decreases, and then increases as the thickness of the leak hole increases, and is the smallest when the leak is ۲۰۰ mm in thickness. Keeping the total area of leak holes unchanged, the location and number of leak holes have little impact on the pressure relief time. When door and window leak holes have different thicknesses, changing the area ratio of the door and window leak holes increases the pressure relief time, by a maximum of ۱.۲۳ seconds.
Keywords:
Authors
N. Li
State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu ۶۱۰۰۳۱, China
H. Meng
Beijing Infrastructure Investment Co., LTD, Beijing ۱۰۰۱۰۱, China
T. Li
State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu ۶۱۰۰۳۱, China
J. Zhang
State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu ۶۱۰۰۳۱, China
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :