MultiCGCN: Multi-Label Text Classification using GCNs and Heterogeneous Graphs

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 175

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJWR-7-4_003

تاریخ نمایه سازی: 11 دی 1403

Abstract:

Multi-label text classification is a critical challenge in natural language processing, where the goal is to assign multiple labels to a given document. Recent advances have primarily focused on deep learning approaches, yet many fail to adequately capture the intricate relationships between documents and labels. In this paper, we propose a novel method called MultiCGCN, in which we leverage Graph Convolutional Networks (GCNs) for multi-label text classification by modeling text as a heterogeneous graph. This unified graph incorporates document similarities, label relationships, and document-label associations, enabling the model to effectively capture both document and label dependencies. We transform the multi-label classification problem into a link prediction task, using Term Frequency–Inverse Document Frequency (TF-IDF) for document similarity and applying GCNs to predict label assignments. Our empirical evaluations demonstrate that MultiCGCN achieves a significant performance boost, improving F۱ score by ۱۰% over traditional baseline models. This approach opens new avenues for enhancing the accuracy of multi-label classification in various domains.

Keywords:

Text Classification , Graph Convolutional Neural Networks , Multi-label Text Classification

Authors

Milad Allahgholi

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

Hossein Rahmani

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

Parinaz Soltanzadeh

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

Aylin Naebzadeh

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Meng, Z. Ye, Y. Yang and H. Zhao, “DeepMCGCN: Multi-channel ...
  • Xiong, L. Yu, X. Niu and Y. Leng, “XRR: Extreme ...
  • Rakhlin, “Convolutional neural networks for sentence classification,” GitHub, ۶, ۲۵, ...
  • Buchner, L. Cao, J. C. Kalo and V. Von Ehrenheim, ...
  • Li, et al., “Enhancing Extreme Multi-Label Text Classification: Addressing Challenges ...
  • I. Wang and C. D. Manning, “Baselines and bigrams: Simple, ...
  • Chenthamarakshan, P. Melville, V. Sindhwani and R. D. Lawrence, “Concept ...
  • Luo, Ö. Uzuner and P. Szolovits, “Bridging semantics and syntax ...
  • Rousseau, E. Kiagias and M. Vazirgiannis, “Text categorization as a ...
  • Skianis, F. Rousseau and M. Vazirgiannis, “Regularizing text categorization with ...
  • Luo, A. R. Sohani, E. P. Hochberg and P. Szolovits, ...
  • Luo, Y. Xin, E. Hochberg, R. Joshi, O. Uzuner and ...
  • Yan, F. Liu, X. Zhuang and J. Ju, “An R-transformer_BiLSTM ...
  • Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. ...
  • Pennington, R. Socher and C. D. Manning, “Glove: Global vectors ...
  • Yu, F. Xiong and Z. Chen, “Text Classification Based on ...
  • Wang, H. Xie, F. L. Wang and L. K. Lee, ...
  • Liu, J. Pang, N. Li, X. Zhou and F. Yue, ...
  • Joulin, E. Grave and P. B. T. Mikolov, “Bag of ...
  • Shen et al., “Baseline Needs More Love: On Simple Word-Embedding-Based ...
  • Wang et al., “Joint Embedding of Words and Labels for ...
  • Le and T. Mikolov, “Distributed representations of sentences and documents,” ...
  • Tang, M. Qu and Q. Mei, “Pte: Predictive text embedding ...
  • Zhang, J. Zhao and Y. LeCun, “Character-level convolutional networks for ...
  • Conneau, H. Schwenk, L. Barrault and Y. Lecun, “Very Deep ...
  • Liu, X. Qiu and X. Huang, “Recurrent neural network for ...
  • Luo, “Recurrent neural networks for classifying relations in clinical notes,” ...
  • S. Tai, R. Socher and C. D. Manning, “Improved Semantic ...
  • Wang, M. Huang, X. Zhu and L. Zhao, “Attention-based LSTM ...
  • Yang, D. Yang, C. Dyer, X. He, A. Smola and ...
  • Lin, Y. Wang, X. Liu and X. Qiu, “A survey ...
  • Zhao, Q. Ai, X. Li, W. Wang, Q. Gao and ...
  • Cunha, F. Viegas, C. França, T. Rosa, L. Rocha and ...
  • Li et al., “A survey on text classification: From traditional ...
  • Palanivinayagam and C. Z., El-Bayeh and R. Damaševičius, “Twenty years ...
  • T. Vu, M. T. Nguyen, V. C. Nguyen, M. H. ...
  • Cai, V. W. Zheng and K. C. C. Chang, “A ...
  • Wang, Y. Ding and S. C. Han, “Graph neural networks ...
  • Zeng, E. Zha, J. Kuang and Y. Shen, “Multi-label text ...
  • Li, B. You, Q. Peng and S. Feng, “Dual-view graph ...
  • Ma, N. Yan, J. Li, M. Mortazavi and N. V. ...
  • N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional ...
  • Bruna, W. Zaremba, A. Szlam and Y. Lecun, “Spectral networks ...
  • Marcheggiani and I. Titov, “Encoding Sentences with Graph Convolutional Networks ...
  • Bastings, I. Titov, W. Aziz, D. Marcheggiani and K. Sima’an, ...
  • Li, R. Jin and Y. Luo, “Classifying relations in clinical ...
  • Defferrard, X. Bresson and P. Vandergheynst, “Convolutional neural networks on ...
  • Cao, X. Deng, S. Yue, P. Jiang, J. Ren and ...
  • Li, B. Wang, Y. Wang and M. Wang, “Graph-based text ...
  • S. Ziaee, H. Rahmani, M. Tabatabaei, A. H. C. Vlot ...
  • Sharma, S. Singh and S. Ratna, “Graph neural network operators: ...
  • C. Kuo, Y. T. Chou, K. Y. Li, W. T. ...
  • H. Hoo, J. Candlish and D. Teare, “What is an ...
  • نمایش کامل مراجع