MultiCGCN: Multi-Label Text Classification using GCNs and Heterogeneous Graphs
Publish place: International Journal of Web Research، Vol: 7، Issue: 4
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 175
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-7-4_003
تاریخ نمایه سازی: 11 دی 1403
Abstract:
Multi-label text classification is a critical challenge in natural language processing, where the goal is to assign multiple labels to a given document. Recent advances have primarily focused on deep learning approaches, yet many fail to adequately capture the intricate relationships between documents and labels. In this paper, we propose a novel method called MultiCGCN, in which we leverage Graph Convolutional Networks (GCNs) for multi-label text classification by modeling text as a heterogeneous graph. This unified graph incorporates document similarities, label relationships, and document-label associations, enabling the model to effectively capture both document and label dependencies. We transform the multi-label classification problem into a link prediction task, using Term Frequency–Inverse Document Frequency (TF-IDF) for document similarity and applying GCNs to predict label assignments. Our empirical evaluations demonstrate that MultiCGCN achieves a significant performance boost, improving F۱ score by ۱۰% over traditional baseline models. This approach opens new avenues for enhancing the accuracy of multi-label classification in various domains.
Keywords:
Authors
Milad Allahgholi
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
Hossein Rahmani
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
Parinaz Soltanzadeh
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
Aylin Naebzadeh
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :