Dynamic Graph Attention Network with Sentiment Analysis for Fake News Detection in Social Networks
Publish place: International Journal of Web Research، Vol: 7، Issue: 4
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 201
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-7-4_001
تاریخ نمایه سازی: 11 دی 1403
Abstract:
Detecting fake news on social media platforms remains a significant challenge due to the dynamic nature of these networks, evolving user-news relationships, the difficulty in distinguishing real from fake information, and the use of advanced generative models to create fake content. In this study, we propose a novel approach, the Dynamic Graph Attention Network (DynGAT), for effective fake news detection. The DynGAT model utilizes the dynamic graph structure of social networks to capture the evolving interactions between users and news sources. It includes a graph construction module that updates the graph based on temporal data and a graph attention module that assigns importance to nodes and edges within the graph. The model applies attention mechanisms to prioritize critical interactions and uses deep learning techniques to classify news articles as real or fake. Experimental results on the TweepFake dataset (۲۰,۷۱۲ samples) show that DynGAT achieves ۹۵% accuracy, outperforming existing methods such as Static GNN (۸۷%), Transformer-based models (۹۱%), and Hybrid models (۸۹%). The model also demonstrates improvements in precision, recall, and F۱ score. This work contributes to the ongoing efforts to combat misinformation and promote reliable information on social media platforms.
Keywords:
Authors
fatemeh jokar
Department of Computer Engineering, Faculty of Computer Engineering and Electrical Engineering, Shahid Bahonar Technical and Vocational University, Shiraz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :