Numerical solution of second order ordinary differential equations
Publish Year: 1403
Type: Journal paper
Language: English
View: 46
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_CAND-3-4_002
Index date: 31 December 2024
Numerical solution of second order ordinary differential equations abstract
Numerical analysis is a modern technology employed by scientists and engineers to tackle complex problems that are challenging to solve through direct methods. In this article, we introduce the Milne-Simpson predictor-corrector technique (MS) and the fourth-order Adam-Bashforth-Moulton predictor-corrector method (ADM) for solving second-order initial value problems (IVPs) of ordinary differential equations.Both methods are highly efficient and particularly suitable for addressing IVPs. We compare the Euler and fourth-order Runge-Kutta methods within the ADM framework to the Milne-Simpson predictor-corrector approach. To validate the accuracy of the numerical solutions, we compare the approximate solutions with the exact solutions and find that they align well. We also observe that initializing the fourth-order ADM method with the fourth-order Runge-Kutta method and using the MS method for approximation yields superior accuracy compared to starting the ADM with the Euler method. Additionally, we evaluate the performance, effectiveness, and computational efficiency of both approaches. Finally, we demonstrate the convergence of these methods and examine the error terms for various step sizes. The numerical experiments are conducted using Matlab 2024.
Numerical solution of second order ordinary differential equations Keywords:
Adam-Bashforth-Moulton Predictor-Corrector Method , Initial value Problems (IVP) , Euler method , Runge Kutta Method , Milne Simpson Predictor-Corrector Method
Numerical solution of second order ordinary differential equations authors
Ayokunle Tadema
Department of Mathematics, University of lbadan, lbadan Nigeria.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :