سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Statistical analysis based on a two-staged SEM-SVM approach for environmental noise annoyance prediction and identification of influencing factors

Publish Year: 1404
Type: Journal paper
Language: English
View: 53

This Paper With 14 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJHCUM-10-1_008

Index date: 31 December 2024

Statistical analysis based on a two-staged SEM-SVM approach for environmental noise annoyance prediction and identification of influencing factors abstract

KGROUND AND OBJECTIVES: Noise pollution is an environmental stressor that is mainly caused due to heavy transportation in urban scenarios. Traffic noise is a growing concern in urban environments, impacting public health and well-being. As urbanization expands, understanding and mitigating traffic-induced noise annoyance becomes increasingly critical. This study aimed to develop a machine-learning model for predicting traffic-induced noise annoyance in Riyadh, Saudi Arabia. The research explored the influence of factors like demographics, noise characteristics, and traffic conditions on noise annoyance.METHODS: A survey was conducted at 21 locations in Riyadh, collecting data from 928 participants. The survey included questions on demographics (gender, age, education, marital status, profession), traffic conditions (traffic flow), and noise perception (transportation noise, noise sensitivity, perceived noisiness). The sampling method employed was a combination of stratified and random sampling. Stratified sampling was used to ensure that various demographic segments (e.g., different age groups, genders, and education levels) were proportionately represented in the survey. Structural Equation Modeling was used to analyze the collected data and identify factors significantly affecting noise annoyance. These significant factors were then used as input variables for a Support Vector Machine model designed to predict noise annoyance. The performance of the Support Vector Machine model was evaluated using Root Mean Square Error, Mean Absolute Error, and R-squared.FINDINGS: The Structural Equation Model analysis revealed that gender, age, education level, traffic flow, noise from traffic, and individual noise sensitivity were significant contributors to noise annoyance. The developed Support Vector Machine model achieved a high level of accuracy with a root mean square error of 1.416 and a coefficient of determination of 0.90. Noise sensitivity emerged as the most crucial factor influencing noise annoyance.CONCLUSION: This study demonstrates the effectiveness of machine learning, specifically the Support Vector Machine, in predicting traffic-induced noise annoyance. The findings highlight the importance of both individual characteristics and environmental factors in noise perception and can be valuable for urban planning and noise mitigation strategies, promoting a more noise-resilient city environment. For the community, urban planners and policymakers can use these findings to design silent areas by implementing noise barriers, optimizing traffic flow, and enforcing stricter noise regulations.

Statistical analysis based on a two-staged SEM-SVM approach for environmental noise annoyance prediction and identification of influencing factors Keywords:

Noise annoyance , Support Vector Machine (SVM) , Structural Equation Modeling (SEM) , Noise Sensitivity , Socio-acoustics Survey

Statistical analysis based on a two-staged SEM-SVM approach for environmental noise annoyance prediction and identification of influencing factors authors

M. Rehman

Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Dammam, ۳۲۲۵۶, Saudi Arabia

M. Kamal

Department of Information Technology, College of Computing and Informatics, Saudi Electronic University, Dammam ۳۲۲۵۶, Saudi Arabia

S. Tiwari

Balaji Institute of Modern Management, Sri Balaji University, Pune- ۴۱۱ ۰۳۳, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Agarwal, S.; Swami, B. L., (۲۰۱۱). Comprehensive approach for the ...
Alghamdi, A. S.; Alzhrani, A. I.; Alanazi, H. H., (۲۰۲۱). ...
Al-Ghonamy, A. I., (۲۰۰۹). Assessment of traffic noise pollution in ...
Al-Ghonamy, A. I., (۲۰۱۰). Analysis and evaluation of road traffic ...
AlSaleem,S.S.; Almhafdy,A.; Berardi, U.; Al-Shargabi, A. A.; Ali, A. A. ...
Ambarwari, A.; Adrian, Q. J.; Herdiyeni, Y., (۲۰۲۰). Analysis of ...
Bergmeir, C.; Benítez, J. M., (۲۰۱۲). On the use of ...
Bravo-Moncayo, L.; Lucio-Naranjo, J.; Chávez, M.; Pavón-García, I.; Garzón, C., ...
Bröer, C., (۲۰۰۸). Private trouble, policy issue people's noise annoyance ...
Bronzaft, A. L.; Hagler, L., (۲۰۱۰). Noise: The invisible pollutant ...
Cerletti, P.; Eze, I. C.; Schaffner, E.; Foraster, M.; Viennau, ...
Chand, N.; Mishra, P.; Krishna, C. R.; Pilli, E. S.; ...
Das, C. P.; Goswami, S.; Das, M., (۲۰۲۲). Prediction of ...
Elshorbagy, K. A., (۱۹۹۹). Noise and community response in Jeddah ...
Eze, I. C.; Foraster, M.; Schaffner, E.; Vienneau, D.; Héritier, ...
Fyhri, A.; Klæboe, R., (۲۰۰۹). Road traffic noise, sensitivity, annoyance ...
Garg, N., (۲۰۲۲). Environmental Noise Environmental noise Control Noise control: ...
Gilani, T. A.; Mir, M. S., (۲۰۲۱). A study on ...
Gupta, A.; Gupta, A.; Jain, K.; Gupta, S., (۲۰۱۸). Noise ...
Hegewald, J.; Schubert, M.; Freiberg, A.; Romero Starke, K.; Augustin, ...
Hemmat, W.; Hesam, A. M.; Atifnigar, H., (۲۰۲۳). Exploring Noise ...
Jakovljevic, B.; Paunovic, K.; Belojevic, G., (۲۰۰۹). Road-traffic noise and ...
Jordan, M. I.; Mitchell, T. M., (۲۰۱۵). Machine learning: Trends, ...
Khorshid, M.; Abou-El-Enien, T. H.; Soliman, G., (۲۰۱۵). A comparison ...
Kim, M.; Chang, S. I.; Seong, J. C.; Holt, J. ...
Kishikawa, H.; Matsui, T.; Uchiyama, I.; Miyakawa, M.; Hiramatsu, K.; ...
Leong, W. C.; Kelani, R. O.; Ahmad, Z., (۲۰۲۰). Prediction ...
Méline, J., Van Hulst, A.; Thomas, F.; Karusisi, N.; Chaix, ...
Min, J. H.; Lee, Y. C., (۲۰۰۵). Bankruptcy prediction using ...
Morihara, T.; Sato, T.; Yano, T., (۲۰۲۲). Re-analysis of socio-acoustic ...
Nazneen, S.; Raza, A.; Khan, S., (۲۰۲۰). Assessment of noise ...
Nourani, V.; Gökçekuş, H.; Umar, I. K., (۲۰۲۰). Artificial intelligence ...
Ouis, D., (۲۰۰۱). Annoyance from road traffic noise: a review. ...
Park, J.; Chung, S.; Lee, J.; Sung, J. H.; Cho, ...
Patel, R.; Singh, P. K.; Saw, S., (۲۰۲۴). Traffic Noise ...
Presidency of Meteorology & Environment (PME). Kingdom of Saudi Arabia ...
Ranpise, R. B.; Tandel, B. N.; Darjee, C., (۲۰۲۱). Assessment ...
Shamsipour, M.; Zaredar, N.; Monazzam, M. R.; Namvar, Z.; Mohammadpour, ...
Stansfeld, S.; Clark, C.; Smuk, M.; Gallacher, J.; & Babisch, ...
Sung, J. H.; Lee, J.; Jeong, K. S.; Lee, S.; ...
Tiwari, S. K.; Kumaraswamidhas, L. A.; Garg, N., (۲۰۲۲). Comparison ...
Tiwari, S. K.; Kumaraswamidhas, L. A.; Garg, N., (۲۰۲۲). Time-series ...
Tiwari, S. K.; Kumaraswamidhas, L. A.; Garg, N., (۲۰۲۳). Assessment ...
Tiwari, S. K.; Kumaraswamidhas, L. A.; Prince; Kamal, M.; Rehman, ...
Tiwari, S. K.; Kumaraswamidhas, L. A.; Patel, R.; Garg, N.; ...
Trafalis, T. B.; Ince, H., (۲۰۰۰, July). Support vector machine ...
Xue, H.; Yang, Q.; Chen, S., (۲۰۰۹). SVM: Support vector ...
Yan, M.; Wang, X.; Wang, B.; Chang, M.; Muhammad, I., ...
Zelaya, C. V. G., (۲۰۱۹, April). Towards explaining the effects ...
Zengin, N.; Ören, B.; Üstündag, H., (۲۰۲۰). The relationship between ...
Zytoon, M. A., (۲۰۱۶). Opportunities for environmental noise mapping in ...
نمایش کامل مراجع