Principal Components of Gradient Distribution for Aerial Images Segmentation
Publish place: 11th Intelligent Systems Conference
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,132
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICS11_266
Index date: 6 October 2013
Principal Components of Gradient Distribution for Aerial Images Segmentation abstract
Aerial images segmentation is a principal task in many applications of remote sensing such as natural disaster monitoring, residential area detection and etc. This paper presents a new method for aerial images segmentation. The method can distinct urban terrains from non-urban terrains using a supervised learning algorithm. Extracted feature for image description is based on principal components analysis of gradient distribution. The proposed method tested on several aerial images of Google Earth taken by satellite and results show that it can segment these images with high accuracy and very fast speed
Principal Components of Gradient Distribution for Aerial Images Segmentation Keywords:
Principal Components of Gradient Distribution for Aerial Images Segmentation authors
Soheil Mehralian
Artificial Intelligence Laboratory Department of Electrical and Computer Engineering Isfahan University of Technology
Maziar Palhang
Artificial Intelligence Laboratory Department of Electrical and Computer Engineering Isfahan University of Technology
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :