سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Artificial Neural Network (ANN) Approach to Predict Tensile Properties of Longitudinally Placed Fiber Reinforced Polymeric Composites including Interphase

Publish Year: 1404
Type: Journal paper
Language: English
View: 62

This Paper With 8 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_MACS-12-2_010

Index date: 27 January 2025

Artificial Neural Network (ANN) Approach to Predict Tensile Properties of Longitudinally Placed Fiber Reinforced Polymeric Composites including Interphase abstract

Machine Learning has become prevalent nowadays for predicting data on the mechanical properties of various materials and is widely used in various polymeric applications. In the present study, Artificial Neural Network (ANN), a computational tool is used to predict the elastic modulus of a composite of longitudinally placed fiber-reinforced polymeric composite. The novelty in carried work is that the property prediction is carried out considering interphase and its properties. For this, tensile properties data of Longitudinally Placed Bamboo Fiber Reinforced Polyester Composite (LUDBPC), Longitudinally Placed Flax Fiber Reinforced Polyester Composite (LUDFPC) and Longitudinally Placed Jute Fiber Reinforced Polyester Composite (LUDJPC) has been procured to generate ANN models. The Levenberg-Marquardt training algorithm is used to generate the ANN models as it gives more accurate results compared to other ANN algorithms based on interphase properties data. The validation of ANN models was also carried out based on fresh experimental results of BPC/FPC by doing the fabrication with hand layup technique and testing of composites with a Universal Testing Machine (UTM). The present work signifies that the developed ANN models give accurate results with experimental results for the prediction of elastic modulus of composite (Ecl) and it can be used for the prediction of longitudinally placed fiber-reinforced composite and Ecl of BPC at volume fraction of fiber (vf):22% is 2248.75 MPa and Ecl of FPC at vf:10% is 3210.50 MPa.

Artificial Neural Network (ANN) Approach to Predict Tensile Properties of Longitudinally Placed Fiber Reinforced Polymeric Composites including Interphase Keywords:

Artificial Neural Network (ANN) Approach to Predict Tensile Properties of Longitudinally Placed Fiber Reinforced Polymeric Composites including Interphase authors

Sagar Chokshi

Department of Mechanical Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science and Technology, Changa-۳۸۸۴۲۱, Gujarat, India

Piyush Gohil

Department of Mechanical Engineering, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara-۳۹۰۰۰۱, Gujarat, India

Vijay Parmar

Department of Mechanical Engineering, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara-۳۹۰۰۰۱, Gujarat, India

Vijaykumar Chaudhary

Department of Mechanical Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science and Technology, Changa-۳۸۸۴۲۱, Gujarat, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Suyambulingam, I., Rangappa, S.M. and Siengchin, S., ۲۰۲۳. Advanced Materials ...
Saxena, M., Morchhale, R.K., Asokan, P. and Prasad, B.K., ۲۰۰۸. ...
Baria, A.N. and Choksi, S., ۲۰۱۶. Wear and Friction Behaviour ...
Sharma, S.C., ۲۰۰۰. Composite materials. Narosa Publishing House[۵] Kaw, A.K., ...
Asim, M., Saba, N., Jawaid, M. and Nasir, M., ۲۰۱۸. ...
Chokshi, S., Gohil, P., Lalakiya, A., Patel, P. and Parmar, ...
Chokshi, S. and Gohil, P., ۲۰۱۸. Effect of strain rate ...
Parikh, H.H., Chokshi, S., Chaudhary, V., Khan, A. and Mistry, ...
Desai, Y. and Chokshi, S., ۲۰۱۸. Tribological Characteristization of Chopped ...
Chokshi, Sagar R., and Gohil, Piyush P., ۲۰۱۸. Experimental investigations ...
Dhandapani, C. and Sivaramakrishnan, R., ۲۰۱۹. Implementation of Machine Learning ...
Lee, W. M., ۲۰۱۹. Python machine learning. John Wiley & ...
Khayyat, H.A., ۲۰۱۸. ANN based Intelligent Mechanical Engineering Design: A ...
Begum, K. and Islam, M., ۲۰۱۳. Natural fiber as a ...
Patel, G.A. and Chokshi, S.R., ۲۰۱۸. Tribological and physical characterization ...
Bajpai, P.K., Singh, I. and Madaan, J., ۲۰۱۴. Development and ...
Palaniappan, S.K., Singh, M.K., Rangappa, S.M. and Siengchin, S., ۲۰۲۳. ...
Phiri, R., Rangappa, S.M., Siengchin, S. and Marinkovic, D., ۲۰۲۳. ...
Chokshi, S., Gohil, P. and Patel, D., ۲۰۲۰. Experimental investigations ...
Hornsby, P.R., Hinrichsen, E. and Tarverdi, K., ۱۹۹۷. Preparation and ...
John, M.J. and Thomas, S., ۲۰۰۸. Biofibres and biocomposites. Carbohydrate ...
Mieck, K.P., Nechwatal, A. and Knobeldorf, C., ۱۹۹۴. Potential applications ...
Mohanty, A.K., Misra, M.A. and Hinrichsen, G.I., ۲۰۰۰. Biofibres, biodegradable ...
Oksman, K., ۲۰۰۰. Mechanical properties of natural fibre mat reinforced ...
Sanadi, A.R., Calufield, D.F. and Rowell, R.M., ۱۹۹۴. Reinforcing polypropylene ...
Chokshi, S., Parmar, V., Gohil, P. and Chaudhary, V., ۲۰۲۲. ...
Chokshi, S. and Gohil, P., ۲۰۲۲. Experimental investigation and mathematical ...
Gohil, P. and Shaikh, A.A., ۲۰۱۰. Transverse elastic modulus in ...
Gohil, P., ۲۰۱۰. Experimental and Analytical Investigations of Interphase Influence ...
Moreno, J.J.M., Pol, A.P., Abad, A.S. and Blasco, B.C., ۲۰۱۳. ...
ASTM D۳۰۳۹/۳۰۳۹M-۰۸, ۲۰۰۸. Standard Test Method for Tensile Properties of ...
Bolcu, D., Stanescu, G. and Ursache, M., ۲۰۰۴. Theoretical and ...
نمایش کامل مراجع