Comparison of Multi-Objective Metaheuristics for Discrete Optimization of Steel Trusses Using Direct Analysis

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 138

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CEJ-10-12_007

تاریخ نمایه سازی: 11 بهمن 1403

Abstract:

This study enriches structural optimization research using direct analysis for steel truss structures, which is often hampered by high computational demands. The main objective of this work is to evaluate multi-objective optimization algorithms in truss sizing optimization with discrete variables, focusing on minimizing total mass and controlling inter-story drift under multiple load combinations. Five leading multi-objective metaheuristic algorithms were assessed: SPEA۲, GDE۳, NSGA۲, MOEA/D, and the novel MOEA/D-EpDE, which uniquely combines MOEA/D with Dynamical Resource Allocation and pbest Differential Evolution. Four performance indicators, such as Generational Distance (GD), GD Plus (GD+), Inverted GD+ (IGD+), and Hypervolume (HV), were utilized. Findings from four truss optimization problems revealed that all considered algorithms located feasible optimal solutions, but MOEA/D-EpDE excelled, consistently securing the lowest GD, GD+, IGD+, and anchor point values, along with the highest HV values in most scenarios. This indicates its superior capability in addressing the problem efficiently. NSGA۲ and MOEA/D also performed well, outperforming GDE۳ and SPEA۲. This study is pioneering in its application of these algorithms to steel truss optimization via direct analysis, highlighting the potential for advanced computational techniques in structural engineering. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۴-۰۱۰-۱۲-۰۷ Full Text: PDF

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Habibi, A. R., & Bidmeshki, S. (2018). A dual approach ...
  • Thai, H. T., & Kim, S. E. (2009). Practical advanced ...
  • Sheng-Xue, H. (2023). Truss optimization with frequency constraints using the ...
  • Ouardani, A. El, & Tbatou, T. (2024). Seismic Isolators Layout ...
  • Altay, O., Cetindemir, O., & Aydogdu, I. (2024). Size optimization ...
  • Kaveh, A., & Hosseini, S. M. (2022). Improved Bat Algorithm ...
  • Nguyen, M. N., Hoang, V. N., & Lee, D. (2023). ...
  • Yasin, A. A., Awwad, M. T., Malkawi, A. B., Maraqa, ...
  • Contreras-Bejarano, O., & Villalba-Morales, J. D. (2024). On the use ...
  • Hajela, P., & Lee, E. (1995). Genetic algorithms in truss ...
  • Bennage, W. A., & Dhingra, A. K. (1995). Optimization of ...
  • Lamberti, L. (2008). An efficient simulated annealing algorithm for design ...
  • Serra, M., & Venini, P. (2006). On some applications of ...
  • Schutte, J. F., & Groenwold, A. A. (2003). Sizing design ...
  • Landa Becerra, R., & Coello, C. A. C. (2006). Cultured ...
  • Degertekin, S. O., Lamberti, L., & Ugur, I. B. (2018). ...
  • Pierezan, J., dos Santos Coelho, L., Cocco Mariani, V., Hochsteiner ...
  • Kaveh, A., & Mahdavi, V. R. (2015). Colliding bodies optimization ...
  • Madah, H., & Amir, O. (2017). Truss optimization with buckling ...
  • Missoum, S., Gürdal, Z., & Gu, W. (2002). Optimization of ...
  • Hrinda, G. A., & Nguyen, D. T. (2008). Optimization of ...
  • Kameshki, E. S., & Saka, M. P. (2007). Optimum geometry ...
  • Martinez, S. Z., & Coello, C. A. C. (2014). A ...
  • Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2000). A ...
  • Sarker, R., Liang, K. H., & Newton, C. (2002). A ...
  • Kukkonen, S., & Lampinen, J. (2005). GDE3: The third Evolution ...
  • Gholizadeh, S., & Fattahi, F. (2021). Multi-objective design optimization of ...
  • Eid, H. F., Garcia-Hernandez, L., & Abraham, A. (2022). Spiral ...
  • Kaveh, A., & Ilchi Ghazaan, M. (2020). A new VPS-based ...
  • Lemonge, A. C. C., Carvalho, J. P. G., Hallak, P. ...
  • Ho-Huu, V., Duong-Gia, D., Vo-Duy, T., Le-Duc, T., & Nguyen-Thoi, ...
  • Cao, T. S., Pham, H. A., & Truong, V. H. ...
  • Cao, T. S., Nguyen, T. T. T., Nguyen, V. S., ...
  • Panagant, N., Pholdee, N., Bureerat, S., Yildiz, A. R., & ...
  • Panagant, N., Kumar, S., Tejani, G. G., Pholdee, N., & ...
  • Nguyen, H. H., & Truong, V. H. (2024). Machine Learning-based ...
  • Truong, V. H., Tangaramvong, S., & Papazafeiropoulos, G. (2024). An ...
  • Nguyen, Q.-B. (2024). An Efficient Framework for Optimization of Nonlinear ...
  • Blandford, G. E. (1996). Progressive failure analysis of inelastic space ...
  • Yang, Y.-B., & Kuo, S.-R. (1994). Theory & Analysis of ...
  • Yang, Y. Bin, & Shieh, M. S. (1990). Solution method ...
  • Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated ...
  • Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover ...
  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A ...
  • Zitzler, E., Laumanns, M., Thiele, L., et al. (2001). SPEA2: ...
  • Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary ...
  • نمایش کامل مراجع