ECG Signal Classification of Cardiovascular Disorder using CWT and DCNN

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 146

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JBPE-15-1_008

تاریخ نمایه سازی: 14 بهمن 1403

Abstract:

Background: Cardiovascular Diseases (CVD) requires precise and efficient diagnostic tools. The manual analysis of Electrocardiograms (ECGs) is labor-intensive, necessitating the development of automated methods to enhance diagnostic accuracy and efficiency.Objective: This research aimed to develop an automated ECG classification using Continuous Wavelet Transform (CWT) and Deep Convolutional Neural Network (DCNN), and transform ۱D ECG signals into ۲D spectrograms using CWT and train a DCNN to accurately detect abnormalities associated with CVD. The DCNN is trained on datasets from physionet.org and the MIT-BIH arrhythmia dataset. The integrated CWT and DCNN enable simultaneous classification of multiple ECG abnormalities alongside normal signals.Material and Methods: This analytical observational research employed CWT to generate spectrograms from ۱D ECG signals, as input to a DCNN trained on diverse datasets. The model is evaluated using performance metrics, such as precision, specificity, recall, overall accuracy, and F۱-score.Results: The proposed algorithm demonstrates remarkable performance metrics with a precision of ۱۰۰% for normal signals, an average specificity of ۱۰۰%, an average recall of ۹۷.۶۵%, an average overall accuracy of ۹۸.۶۷%, and an average F۱-score of ۹۸.۸۱%. This model achieves an approximate average overall accuracy of ۹۸.۶۷%, highlighting its effectiveness in detecting CVD. Conclusion: The integration of CWT and DCNN in ECG classification improves accuracy and classification capabilities, addressing the challenges with manual analysis. This algorithm can reduce misdiagnoses in primary care and enhance efficiency in larger medical institutions. By contributing to automated diagnostic tools for cardiovascular disorders, it can significantly improve healthcare practices in the field of CVD detection.

Authors

Tawfikur Rahman

Department of Electrical and Electronic Engineering, Faculty of Engineering, International University of Business Agriculture and Technology, Uttara, Dhaka ۱۲۳۰, Bangladesh

Rasel Ahommed

Department of Electrical and Electronic Engineering, Faculty of Engineering, International University of Business Agriculture and Technology, Uttara, Dhaka ۱۲۳۰, Bangladesh

Nibedita Deb

Department of Agriculture, International University of Business Agriculture and Technology, Uttara, Dhaka ۱۲۳۰, Bangladesh

Utpal Kanti Das

Department of Computer Science and Engineering, Faculty of Engineering, International University of Business Agriculture and Technology, Uttara, Dhaka ۱۲۳۰, Bangladesh

Md. Moniruzzaman

Department of Electrical and Electronic Engineering, Faculty of Engineering, International University of Business Agriculture and Technology, Uttara, Dhaka ۱۲۳۰, Bangladesh

Md. Alamgir Bhuiyan

Department of Computer Science and Engineering, Faculty of Engineering, International University of Business Agriculture and Technology, Uttara, Dhaka ۱۲۳۰, Bangladesh

Farzana Sultana

Department of Electrical and Electronic Engineering, Faculty of Engineering, International University of Business Agriculture and Technology, Uttara, Dhaka ۱۲۳۰, Bangladesh

Md. Kamruzzaman Kausar

Department of Electrical and Electronic Engineering, Faculty of Engineering, International University of Business Agriculture and Technology, Uttara, Dhaka ۱۲۳۰, Bangladesh

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Rajamhoana SP, Devi CA, Umamaheswari K, Kiruba R, Karunya K, ...
  • Balamurugan R, Ratheesh S, Venila YM. Classification of heart disease ...
  • Olanrewaju RF, Ibrahim SN, Asnawi AL, Altaf H. Classification of ...
  • Pashoutan S, Baradaran Shokouhi S. Reconstructed State Space Features for ...
  • Rashed-Al-Mahfuz M, Moni MA, Lio’ P, Islam SMS, Berkovsky S, ...
  • Gutiérrez-Gnecchi JA, Morfin-Magana R, Lorias-Espinoza D, Del Carmen Tellez-Anguiano A, ...
  • Nurmaini S, Umi Partan R, Caesarendra W, Dewi T, Naufal ...
  • Mazidi MH, Eshghi M, Raoufy MR. Premature Ventricular Contraction (PVC) ...
  • Yıldırım Ö, Pławiak P, Tan RS, Acharya UR. Arrhythmia detection ...
  • Izci E, Ozdemir MA, Degirmenci M, Akan A. Cardiac arrhythmia ...
  • Wang T, Lu C, Sun Y, Yang M, Liu C, ...
  • Japkowicz N. Learning from imbalanced data sets: a comparison of ...
  • Zhao Z, Liu C, Li Y, Li Y, Wang J, ...
  • Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, ...
  • AL-Bayati MD, Mohammed DY, Sarfraz M. A Novel Approach for ...
  • Zhang X, Gu K, Miao S, Zhang X, Yin Y, ...
  • Radhakrishnan T, Karhade J, Ghosh SK, Muduli PR, Tripathy RK, ...
  • Mollakazemi MJ, Asadi F, Tajnesaei M, Ghaffari A. Fetal QRS ...
  • Jun TJ, Nguyen HM, Kang D, Kim D, Kim D, ...
  • Boda S, Mahadevappa M, Dutta PK. An automated patient-specific ECG ...
  • Ashtiyani M, Navaei Lavasani S, Asgharzadeh Alvar A, Deevband MR. ...
  • Kiranyaz S, Ince T, Gabbouj M. Real-Time Patient-Specific ECG Classification ...
  • Ince T, Kiranyaz S, Eren L, Askar M, Gabbouj M. ...
  • Gaddam PG, Sreehari RV. Automatic classification of cardiac arrhythmias based ...
  • Daydulo YD, Thamineni BL, Dawud AA. Cardiac arrhythmia detection using ...
  • نمایش کامل مراجع