ارزیابی مدل های پارامتری و غیر پارامتری در پیش بینی وقایع نادر ترافیکی بر مبنای سرعت متوسط و حجم ترافیک
Publish place: Modares Civil Engineering journal، Vol: 23، Issue: 2
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: Persian
View: 153
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MCEJ-23-2_004
تاریخ نمایه سازی: 6 اسفند 1403
Abstract:
پیش بینی متغیرهای ترافیکی یکی از ابزارهای کارآمد در مدیریت تقاضای سفر است. با استفاده از این ابزار، متغیرهای ترافیکی پیش بینی شده در اختیاران کاربران و گردانندگان سیستم حمل ونقل قرار می گیرد تا برنامه ریزی های فردی و سیاست گذاری های کلی اتخاذ شوند. در این پژوهش دو متغیر ترافیکی سرعت متوسط و حجم ترافیک ساعتی، در جاده برون شهری کرج به چالوس به عنوان محوری با نوسانات زیاد متغیرهای ترافیکی، پیش بینی شده است. از میان مدل های متنوع پیش بینی کننده، مدل ساریما به عنوان یک مدل پارامتری و مدل های شبکه عصبی مصنوعی و ماشین بردار پشتیبان به عنوان مدل های غیرپارامتری استفاده شده اند. در فرآیند پیش پردازش داده، متغیرهای اثرگذار بر سرعت متوسط و حجم ترافیک استخراج و به عنوان متغیرهای پیش بینی کننده به مجموعه داده اضافه شده است. همچنین ازآنجاکه اطلاع داشتن از مقادیر بیشینه و کمینه سرعت متوسط و حجم ترافیک به عنوان وقایع نادر ترافیکی، اهمیت بیشتری به نسبت مقادیر عادی دارد، ارزیابی مدل ها با تاکید بر پیش بینی وقایع نادر انجام شده است. نتایج نشان می دهد، برای داده آزمون، کمترین ریشه میانگین مربعات خطای پیش بینی سرعت متوسط و حجم ترافیک به ترتیب با استفاده از مدل های شبکه عصبی مصنوعی و ماشین بردار پشتیبان و برابر با ۱۳۹ وسیله نقلیه بر ساعت و ۵ کیلومتر بر ساعت حاصل شده است. کمترین ریشه میانگین مربعات خطا پیش بینی سرعت متوسط برای چارک اول و چهارم به عنوان مقادیر نادر ترافیکی مقادیر مشاهده شده به ترتیب توسط مدل های ماشین بردار پشتیبان و شبکه عصبی مصنوعی به دست آمده است. همچنین چارک اول و چهارم مقادیر مشاهده شده حجم ترافیک با مدل ماشین بردار پشتیبان دقیق تر از دو مدل دیگر پیش بینی شده اند.
Keywords:
Traffic variables prediction , Rare event prediction , SARIMA , Artificial neural network , Support vector machine , پیش بینی متغیرهای ترافیکی , پیش بینی وقایع نادر , ساریما , شبکه عصبی مصنوعی , ماشین بردار پشتیبان
Authors
آرش رساایزدی
Tarbiat Modares University
سیداحسان سیدابریشمی
Tarbiat Modares University
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :