Development of Mathematical Model for Forecasting the Production Rate
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 109
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-38-8_002
تاریخ نمایه سازی: 21 اسفند 1403
Abstract:
This article is devoted to the issue of digitalization of the field. The authors reviewed the existing methods of building digital systems and methods of production level estimation. On the basis of the method of expert evaluations, the conceptual and then mathematical model of the field is constructed. After that, the behavior of the field depending on the operating conditions was simulated with the help of a digital system design. Forecasting models for production levels are constructed. A distinctive feature of this study is the application of a digital system design to the oil and gas industry. The results demonstrated in this study have found their reflection in practical application in fields complicated by paraffin content. The authors described the idea of Random Forest which is to combine multiple trees to obtain an accurate result, each trained on a random dataset and selecting random subsets of parameters. The Random Forest model was imported from the sklearn library. The authors determined that the model mean square error and mean absolute error remained large for three wells: ۱۵/۹-F-۱۱, ۱۵/۹-F-۱۲, and ۱۵/۹-F-۱۵ D. The presented studies are the final stage in the framework of the work carried out as a dissertation research at Empress Catherine II Saint Petersburg Mining University.
Keywords:
Authors
Y. V. Ilyushin
Economics Faculty, Empress Catherine II Saint Petersburg Mining University, ۱۹۹۱۰۶ Saint-Petersburg, Russia
V. A. Nosova
Economics Faculty, Empress Catherine II Saint Petersburg Mining University, ۱۹۹۱۰۶ Saint-Petersburg, Russia
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :