Applying Deep Generative Methods to Generate Synthetic Data in Power Systems
Publish place: Journal of Modeling & Simulation in Electrical & Electronics Engineering، Vol: 4، Issue: 2
Publish Year: 1403
Type: Journal paper
Language: English
View: 27
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_MSEEE-4-2_004
Index date: 22 March 2025
Applying Deep Generative Methods to Generate Synthetic Data in Power Systems abstract
The lack of access to reliable databases, as well as the small number and imbalance of databases, is one of the main limitations of using machine learning methods in power systems, which can reduce efficiency and cause distrust in the results obtained from these methods. One of the solutions used to solve this problem is the use of Synthetic data generation. Two deep generative architectures, Generative Adversarial Network (GAN) and Variational Auto Encoder (VAE), are currently used to generate synthetic data. Due to the novelty and importance of the subject, until now, a comparative study has not been done on the research conducted in this field, in terms of subject classification, with an emphasis on validation methods of synthetic production databases. The purpose of this research is to review the studies done in this field up to now and examine the research trends for the future. In this regard, after introducing the principles of GAN and VAE deep architectures, the subject of synthetic data generation using the mentioned methods in power systems has been studied comparatively.
Applying Deep Generative Methods to Generate Synthetic Data in Power Systems Keywords:
Applying Deep Generative Methods to Generate Synthetic Data in Power Systems authors
Mohsen Kariman Majd
Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.
Mohsen Niasati
Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :