A Design and Optimization of Multi-slot Diffusers for Power Augmentation in Small Axial Flow Wind Turbines
Publish place: Journal of Applied Fluid Mechanics، Vol: 18، Issue: 6
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 145
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JAFM-18-6_016
تاریخ نمایه سازی: 18 فروردین 1404
Abstract:
This study delves into a cutting-edge approach to boosting the efficiency of small urban wind turbines through the innovative use of power augmentation diffusers. Due to their compact size and the naturally low wind energy availability in urban areas, conventional small wind turbines often fall short in economic viability. Power augmentation, particularly using multi-slotted diffuser shrouds for boundary layer control (BLC), presents a promising solution. In this research various diffuser geometries are designed and tested using Ansys Fluent software and the SST k-ω turbulence model. The resulting data is integrated into an artificial neural network (ANN) and further optimized using both single-objective and multi-objective genetic algorithms (GA). Remarkably, the optimized designs demonstrate a significant increase in kinetic energy, with one geometry achieving nearly ۵ times the free-stream kinetic energy at the throat and another delivering over ۵.۳ times more at the throat and ۵۲% higher kinetic energy at the diffuser outlet. These breakthroughs offer valuable insights for the future of small wind turbine design, providing a pathway to more efficient, economically feasible solutions.
Keywords:
Authors
A. Naghavi Moghaddam
Department of Mechanical Engineering, University of Birjand, Birjand, Iran
S. Malek Jafarian
Department of Mechanical Engineering, University of Birjand, Birjand, Iran
S. Mirbozorgi
Department of Mechanical Engineering, University of Birjand, Birjand, Iran
A. Bak Khoshnevis
Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :