An Enhanced Genetic Algorithm for Task Scheduling in Heterogeneous Systems
Publish place: Computational Sciences and Engineering، Vol: 3، Issue: 2
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 92
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CSE-3-2_001
تاریخ نمایه سازی: 26 فروردین 1404
Abstract:
Generally, jobs are divided into smaller portions, in parallel and according to distributed processing, and each portion is called a task. Each task can execute dependently or independently. When introducing heterogeneous systems, it is desirable that tasks can run on these systems. Since it is advantageous that tasks running on heterogeneous systems are completed faster, the optimization of task scheduling is of great importance. Actually, task scheduling problems in heterogeneous systems are NP-hard and it is a crucial issue. In such problems, Directed Acyclic Graphs (DAGs) can be used as task graphs to be scheduled on heterogeneous systems. The proposed method presents a genetic algorithm with new operators and final scheduler to be scheduled on heterogeneous systems. The practicality and convergence of the algorithm are proved by Markov’s chain theory. The findings reveal that the currently proposed algorithm is more efficient in comparison to previously presented ones and also has a better make span. Moreover, it is concluded that the Enhanced Genetic Algorithm (EGA) achieves the solution faster in early generations.
Keywords:
Authors
Saeed Mirpour Marzuni
Department of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
Javad Vahidi
Department of Computer Science, Iran University of Science and Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :