Multiple Sclerosis Diagnosis Methods Using Machine Learning and Imaging Techniques
Publish place: Computational Sciences and Engineering، Vol: 4، Issue: 1
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 143
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CSE-4-1_004
تاریخ نمایه سازی: 26 فروردین 1404
Abstract:
Multiple Sclerosis (MS) disease is immune disorder that destroys myelin in the nervous system and causes many complications including motor and sensory disorders. Nowadays, medical images including Magnetic Resonance Imaging (MRI) and Optical Coherence Tomography (OCT) are recognized as the basic tools in the diagnosis of MS disease. Due to the large amount of image data in this method, the use of machine learning methods, especially Neural Networks (NNs) plays an important role in image processing. This paper presents a comprehensive overview of different methods, which utilize NNs to MS diagnosis. This review presents the classical of NNs and Convolutional NNs (CNNs), which are used in the MS diagnosis. In addition, challenges, and recent developments in this field are presented, which provides directions for future researches in this field.
Keywords:
Authors
Mandana Aghazadenejat
Department of Electrical Engineering, University of Science and Culture, Tehran, Iran
Abdalhossein Rezai
Department of Electrical Engineering, University of Science and Culture, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :