Multiple Sclerosis Diagnosis Methods Using Machine Learning and Imaging Techniques

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 143

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CSE-4-1_004

تاریخ نمایه سازی: 26 فروردین 1404

Abstract:

Multiple Sclerosis (MS) disease is immune disorder that destroys myelin in the nervous system and causes many complications including motor and sensory disorders. Nowadays, medical images including Magnetic Resonance Imaging (MRI) and Optical Coherence Tomography (OCT) are recognized as the basic tools in the diagnosis of MS disease. Due to the large amount of image data in this method, the use of machine learning methods, especially Neural Networks (NNs) plays an important role in image processing. This paper presents a comprehensive overview of different methods, which utilize NNs to MS diagnosis. This review presents the classical of NNs and Convolutional NNs (CNNs), which are used in the MS diagnosis. In addition, challenges, and recent developments in this field are presented, which provides directions for future researches in this field.

Authors

Mandana Aghazadenejat

Department of Electrical Engineering, University of Science and Culture, Tehran, Iran

Abdalhossein Rezai

Department of Electrical Engineering, University of Science and Culture, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • . B. A. C. Cree, J. R. Oksenberg, and S. ...
  • . F. D. Lublin et al, “How patients with multiple ...
  • . R. Rahmanzadeh et al, “A new advanced MRI biomarker ...
  • . A. Pal and Y. Rathi, “A review and experimental ...
  • . G. Goh et al, “Multimodal neurons in artificial neural ...
  • . B. Souid, S. Yahia, T. Bouchrika, and O. Jemai, ...
  • . L. Coll et al, “Global and Regional Deep Learning ...
  • . G. Giovannoni, C. Hawkes, J. Lechner-Scott, M. Levy, E. ...
  • . R. Magliozzi and A. H. Cross, “Can CSF biomarkers ...
  • . M. P. Sormani et al, “Disease‐modifying therapies and coronavirus ...
  • . R. Reda, A. Zanza, A. Mazzoni, A. Cicconetti, L. ...
  • . A. Tiwari, S. Srivastava, and M. Pant, “Brain tumor ...
  • . N. Weiskopf, L. J. Edwards, G. Helms, S. Mohammadi, ...
  • . C. Z. Cooley et al, “A portable scanner for ...
  • . G. R. Yang and X.-J. Wang, “Artificial neural networks ...
  • . N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. ...
  • . X. Liu, S. Tian, F. Tao, and W. Yu, ...
  • . F.-L. Fan, J. Xiong, M. Li, and G. Wang, ...
  • . S. Chung and L. F. Abbott, “Neural population geometry: ...
  • . J. L. Semmlow and B. Griffel, Biosignal and medical ...
  • . X. Liu, L. Song, S. Liu, and Y. Zhang, ...
  • . Y. Li, J. Zhao, Z. Lv, and J. Li, ...
  • . S. Farabi Maleki et al, “Artificial Intelligence for multiple ...
  • . N. Haj Messaoud et al, “Automated segmentation of multiple ...
  • . M. Ortiz et al, “Diagnosis of multiple sclerosis using ...
  • . F. Nabizadeh, E. Ramezannezhad, A. Kargar, A. M. Sharafi, ...
  • . J. M. Seok et al, “Differentiation between multiple sclerosis ...
  • . M. Filippi et al, “Present and future of the ...
  • . A. Montolío, J. Cegoñino, E. Garcia‐Martin, and A. Pérez ...
  • . A. Kaur, L. Kaur, and A. Singh, “DeepCONN: patch-wise ...
  • نمایش کامل مراجع