A Density-Based Fuzzy Clustering Algorithm Using Multi-Representatives Points Per Cluster Based on a New Distance Measure Using KNN Algorithm
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 138
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-38-12_005
تاریخ نمایه سازی: 10 اردیبهشت 1404
Abstract:
In analyzing phenomena around us, clustering is among the most commonly used techniques in machine learning for comparing, and categorizing them into different groups based on intrinsic features. One of the main challenges facing clustering algorithms is selecting a suitable representative for each cluster. Existing algorithms often choose a single representative, which can lead to suboptimal performance on many datasets (especially asymmetric datasets). This process is completely dependent on the type of internal distribution of the clusters, and that single point may not be a suitable representative for that cluster. The proposed algorithm for dealing with datasets, inspired by the fuzzy ALM method and avoiding complex formulas, and calculations, initially breaks the system down into simpler (two-dimensional) systems. After spreading ink drops, by finding the vertical Narrow path and the horizontal narrow path, it selects a set of points as the representation of each cluster. The proposed algorithm, unlike many conventional algorithms, provides a representative set for each cluster and also enhances the algorithm's performance in dealing with datasets that have an asymmetric structure by introducing a new distance measure based on the KNN method and utilizing the set of prime numbers. The Accuracy, F۱-Score, and AMI achieved when working with many low-dimensional, and high-dimensional datasets has been higher compared to algorithms such as FUALM, HiDUALM, K-Means, DBSCAN, DENCLUE and IRFLLRR and in some cases, the achieved accuracy has been equal to ۱۰۰ percent.
Keywords:
Authors
S. Haghzad Klidbary
Faculty of Engineering, Department of Electrical and Computer Engineering, University of Zanjan, Zanjan, Iran
M. Javadian
School of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :