Generalizations of the Hilbert-Weierstrass theorem and Tonelli-Morrey theorem: The regularity of solutions of differential equations and optimal control problems

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 118

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJNAA-16-8_010

تاریخ نمایه سازی: 16 اردیبهشت 1404

Abstract:

One of the basic problems in the “Calculus of Variations” is the minimization of the following functional:F(x)=\int_a^b f(t,x(t),x'(t)) dt,over a class of functions x defined on the interval [a,b]. According to a regularity theorem, solutions to this fundamental problem are found in a smaller class of more regular functions. However, they were originally considered to belong to a larger class. In this context, two theorems attributed to “Hilbert-Weierstrass” and “Tonelli-Morrey” are two classical studies of the regularity of discussion for the solutions to this problem. As higher-order differential equations and higher-order optimal control problems become more prevalent in the literature, regularity issues for these problems should receive more attention. Therefore, a generalization of the above regularity theorems is presented here, namely the regularity of solutions to the following functionalF(x)=\int_a^b f(t,x(t),x'(t),\dots,x^{(n-۱)}(t)) dtwhere n \geq ۲. It is expected that this extension will be helpful in discussing the regularity of higher-order differential equations and optimal control problems.

Authors

Saman Khoramian

Faculty of Mathematics and Computer, Kharazmi University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • T. Barbu, V. Barbu, V. Biga, and D. Coca, A ...
  • A.M. Bloch and P.E. Crouch, On the equivalence of higher ...
  • A. Chambolle, R.A. Devore, N.-Y. Lee, and B.J. Lucier, Nonlinear ...
  • F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, ...
  • I. Daubechies, M. Defrise, and C. De Mol, An iterative ...
  • R. Devore and B. Lucier, Fast wavelet techniques for near ...
  • P. Drabek and J. Milota, Methods of Nonlinear Analysis: Applications ...
  • P. du Bois-Reymond, Erlauterungen zu den anfangsgrunden der variationsrechnung, Math. ...
  • H.H. Goldstine, A History of the Calculus of Variations from ...
  • T. Gyulov, G. Morosanu, and S. Tersian, Existence for a ...
  • S. Khoramian, An iterative thresholding algorithm for linear inverse problems ...
  • S. Krantz and H. Parks, Implicit Function Theorem: History, Theory, ...
  • C.T. Lee, Some remarks on the fifth-order KdV equations, Math. ...
  • Z. Liu, J.S. Ume, D.R. Anderson, and S.M. Kang, Twin ...
  • C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer ...
  • G.F. Simmons and J.S. Robertson, Differential Equations with Applications and ...
  • M. Tenenbaum and H. Pollard, Ordinary Differential Equations, Dover Publications, ...
  • L. Tonelli, Fondamenti di Calcolo Delle Variazioni, Zanichelli, Bologna, ۱۹۲۱ ...
  • S. Treanta and C. Udriste, Optimal control problems with higher ...
  • F. Wu, Existence of eventually positive solutions of fourth order ...
  • M. Younis, D. Singh, and A.A.N. Abdou, A fixed point ...
  • M. Younis, A. Stretenovic, and S. Radenovic, Some critical remarks ...
  • M. Younis, D. Singh, I. Altun, and V. Chauhan, Graphical ...
  • M. Younis, D. Singh, S. Radenovic, and M. Imdad, Convergence ...
  • J. Zhu, Optimization of Power System Operation, ۲nd ed., Wiley-IEEE ...
  • J.A. Momoh, Smart Grid: Fundamentals of Design and Analysis, Wiley-IEEE ...
  • H. Singh, Introduction to Smart Grid: Concepts, Technologies, and Evolution, ...
  • F. Li, W. Qiao, H. Sun, H. Wan, J. Wang, ...
  • S.P. Timoshenko and J.M. Gere, Theory of Elastic Stability, ۲nd ...
  • J.M. Gere and S.P. Timoshenko, Mechanics of Materials, ۴th ed., ...
  • A.C. Ugural, Stresses in Beams, Plates, and Shells, ۳rd ed., ...
  • L. Meirovitch, Fundamentals of Vibrations, McGraw-Hill, ۲۰۰۱ ...
  • S.S. Rao, Mechanical Vibrations, ۵th ed., Prentice Hall, ۲۰۱۱ ...
  • S. Timoshenko and D.H. Young, Vibration Problems in Engineering, ۳rd ...
  • نمایش کامل مراجع