Generalizations of the Hilbert-Weierstrass theorem and Tonelli-Morrey theorem: The regularity of solutions of differential equations and optimal control problems
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 118
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-16-8_010
تاریخ نمایه سازی: 16 اردیبهشت 1404
Abstract:
One of the basic problems in the “Calculus of Variations” is the minimization of the following functional:F(x)=\int_a^b f(t,x(t),x'(t)) dt,over a class of functions x defined on the interval [a,b]. According to a regularity theorem, solutions to this fundamental problem are found in a smaller class of more regular functions. However, they were originally considered to belong to a larger class. In this context, two theorems attributed to “Hilbert-Weierstrass” and “Tonelli-Morrey” are two classical studies of the regularity of discussion for the solutions to this problem. As higher-order differential equations and higher-order optimal control problems become more prevalent in the literature, regularity issues for these problems should receive more attention. Therefore, a generalization of the above regularity theorems is presented here, namely the regularity of solutions to the following functionalF(x)=\int_a^b f(t,x(t),x'(t),\dots,x^{(n-۱)}(t)) dtwhere n \geq ۲. It is expected that this extension will be helpful in discussing the regularity of higher-order differential equations and optimal control problems.
Keywords:
Authors
Saman Khoramian
Faculty of Mathematics and Computer, Kharazmi University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :