Comparative Analysis of Image Segmentation Methods in Power Line Monitoring Systems
Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 130
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-39-1_001
تاریخ نمایه سازی: 20 اردیبهشت 1404
Abstract:
This study presents a comparative study of image segmentation methods for power line monitoring using unmanned aerial vehicle (UAV) imagery. The study investigates whether a hybrid segmentation pipeline—combining classical image processing and deep learning—can enhance defect detection under challenging conditions. Three traditional methods (Otsu thresholding, Canny/Sobel edge detection, and k-means clustering) and three deep learning models (UNet, DeepLabv۳, Mask R-CNN) were evaluated on a dataset of annotated UAV images, including real and synthetically augmented scenes with lighting, noise, and weather variations. Performance was measured using Intersection over Union (IoU), Pixel Accuracy, and processing time.Traditional methods demonstrated fast inference (۰.۲-۰.۴) but limited accuracy (IoU ۰.۴۷–۰.۵۸; Accuracy ۷۲.۵ –۸۲%). Deep learning models significantly outperformed them: UNet achieved ۰.۸۵ IoU and ۹۴% accuracy; DeepLabv۳ reached ۰.۸۸ IoU and ۹۶%; and Mask R-CNN led with ۰.۹۰ IoU and ۹۷% accuracy, though at ۱.۲ seconds per image. The proposed hybrid method combines classical preprocessing for region-of-interest extraction with Mask R-CNN segmentation, achieving ۰.۸۹ IoU, ۹۶.۵% accuracy, and reduced processing time (۰.۷۵ s/image), improving speed by ۳۰% with minimal accuracy loss. Robustness tests showed deep learning and hybrid methods degraded less than ۶% under noise, compared to ۲۰% for traditional methods. The results demonstrate that hybrid segmentation provides a practical balance between accuracy and efficiency, suitable for real-time monitoring on resource-limited platforms.
Keywords:
Authors
T. F. Tulyakov
Department of System Analysis and Management of Empress Catherine II Saint Petersburg Mining University Saint Petersburg, Russia
O. V. Afanaseva
Department of System Analysis and Management of Empress Catherine II Saint Petersburg Mining University Saint Petersburg, Russia
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :