Modeling the Biokinetics of Autothermal Thermophilic Aerobic Digestion: Application of Integrated Multi-layer Perceptron Tuned with Nature-Inspired Technique

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 134

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJCCE-43-10_022

تاریخ نمایه سازی: 16 خرداد 1404

Abstract:

The Autothermal Thermophilic Aerobic Digestion (ATAD) process stands as a modern wastewater treatment method used for sludge digestion. This process uses thermophilic microbes, such as Thermotogaceae and Clostridiaceae, to break down organic waste naturally without needing external energy sources. This makes it a good way to stabilize the waste, by degrading it into simpler biochemicals through endogenous respiration. Despite its effectiveness, this process is complex, involving microbiological, thermodynamic, biochemical, and kinetic intricacies. This study delves into the kinetics aspect, acknowledging the potential operational setbacks arising from inadequate comprehension. The investigation emphasizes the intricate nature of the biokinetics, encompassing diverse bioreactions related to microorganism growth and sludge digestion. Recognizing the challenges of classical modeling approaches, the paper advocates for artificial neural networks (ANNs) as a promising alternative, citing their ability to handle complex and non-linear data structures. The study used kinetic data to construct an optimized ANN model predicting the kinetic rate constant (KATAD). The model was further tuned with the genetic algorithm (GA), which is a well-known nature-inspired optimizer, to demonstrate exceptional accuracy (more than ۹۹%). Model evaluation using causal index (CI) showed that temperature (TATAD) was the most influential parameter (CI = ۱.۲۳), followed by the primary to secondary sludge ratio (P/S) parameter (CI = -۰.۴۷), and secondary sludge concentration (Cs) with the least impact on KATAD (CI = ۰.۱۹). This research presents a novel study exploring the kinetics of the recently developed ATAD technology. Moreover, it used a cutting-edge approach to tackle the complexities of ATAD. This work advances our understanding of ATAD kinetics and lays the groundwork for improved wastewater treatment strategies. The successful application of the ANN-GA model paves the way for more accurate and effective treatment processes.

Authors

Armin Rahimieh

Biotechnology Group, Chemical Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran, I.R. IRAN

Kourosh Fakhari

Biotechnology Group, Chemical Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran, I.R. IRAN

Mohsen Nosrati

Biotechnology Group, Chemical Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran, I.R. IRAN

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Pembroke J.T., Ryan M.P., Autothermal Thermophilic Aerobic Digestion (ATAD) for ...
  • Liu S., Zhu N., Li L.Y., The One-Stage Autothermal Thermophilic ...
  • Layden N.M., Mavinic D.S., Kelly H.G., Moles R., Bartlett J., ...
  • Martín M.A., Gutiérrez M.C., Dios M., Siles J.A., Chica A.F., ...
  • Biedka P., Biodegradation Kinetics of Organic Matter in Water from ...
  • Liu J.M., Shi L., Wang H.Z., Jia W.Z., Zhu Z.R., ...
  • Vismara R., A model for Autothermic Aerobic Digestion: Effects of ...
  • Cheng J., Zhu J., Kong F., Zhang C., Influence of ...
  • Kovács R., Miháltz P., Csikor Z., Kinetics of Autothermal Thermophilic ...
  • Vladova R., Kirilova E., Vaklieva-Bancheva Ng., An Approach for Reduction ...
  • Chen J., Ely R.L., Comparison of Artificial Neural Network, Genetic ...
  • Cruz I.A., Chuenchart W., Long F., Surendra K., Andrade L.R.S., ...
  • Kirilova E.G., Vaklieva-Bancheva N.G., ANN Modeling of a Two-Stage Industrial ...
  • Vaklieva-Bancheva N.G., Vladova R.K., Kirilova E.G., Simulation of Heat-Integrated Autothermal ...
  • Kirilova E., Vaklieva-Bancheva N., Vladova R., Prediction of Temperature Conditions ...
  • Kirilova E.G., Vladova R.K., Vaklieva-Bancheva N.G., Heat Integration of Two-Stage ...
  • Kirilova E., Vladova R., Vaklieva-Bancheva N., Multiscenario Approach for Capturing ...
  • Duarte M.S., Martins G., Oliveira P., Fernandes B., Ferreira E.C., ...
  • Beltramo T., Ranzan C., Hinrichs J., Hitzmann B., Artificial Neural ...
  • Wang Y., Cheng Y., Liu H., Guo Q., Dai C., ...
  • Lowe M., Qin R., Mao X., A Review on Machine ...
  • Fatemi S., Masoori M., Bozorgmehry Boozarjomehry R., Application of Genetic ...
  • Do H.T., Bach N.V., Nguyen L.V., Tran H.T., Nguyen M.T., ...
  • Khan M., Noor S., Performance Analysis of Regression-Machine Learning Algorithms ...
  • Rojas J., Zhelev T., Bojarski A.D., Modelling and Sensitivity Analysis ...
  • Baba K., Enbutu I., Yoda M., Explicit Representation of Knowledge ...
  • Poorasgari E., Örmeci B., A Mathematical Model for the Kinetics ...
  • Shi Y., Ren H., VSS Degradation Kinetics in High-Temperature Aerobic ...
  • نمایش کامل مراجع