Computational Analysis of Electrochemical Behavior and Fullerene-Based Adsorbents for Extraction of Acetamiprid
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 125
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-42-11_007
تاریخ نمایه سازی: 17 خرداد 1404
Abstract:
Using density functional methods, the results of the analysis of traditional adsorbents and adsorbents based on nanosized particles capable of trapping acetamiprid molecules in fruits and plants are presented. We considered the following interacting compounds: acetamiprid@ fullerene C۲۰, a fragment of the structure of activated carbon. We determined the optimal configurations of the corresponding interacting structures, estimated their electrochemical parameters and binding energies, and chemical potentials. The highest binding energy was obtained -۰.۷۰ eV adsorbed on C۲۰ fullerene. At the same time, the energy gaps between the occupied HOMO and unoccupied LUMO molecular states were calculated, which makes it possible to characterize the reactivity and stability of molecules. acetamiprid has rather large gaps HOMO-LUMO. Using the concept of the electronic localization function, we found that a covalent bond is formed between acetamiprid and C۲۰ fullerene with a sufficiently high degree of electron localization in the bond region. In other cases, the value of the localization function indicates the absence of a chemical bond between the compounds. The proposed study gives recommendations on the adsorption of acetamiprid for further electrochemical analysis, which will allow them to be found in fruits and plants by gas chromatography using a flame ionization detector.
Keywords:
Authors
Moslem Basij
Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, I.R. IRAN
Razieh Razavi
Department of Physical Chemistry, Faculty of Science, University of Jiroft, Jiroft, I.R. IRAN
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :